|
|
A027811
|
|
a(n) = 3*(n+1)*binomial(n+5,6).
|
|
1
|
|
|
6, 63, 336, 1260, 3780, 9702, 22176, 46332, 90090, 165165, 288288, 482664, 779688, 1220940, 1860480, 2767464, 4029102, 5753979, 8075760, 11157300, 15195180, 20424690, 27125280, 35626500, 46314450, 59638761, 76120128
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Number of 12-subsequences of [ 1, n ] with just 5 contiguous pairs.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 3*(2+5x)*x/(1-x)^8.
Sum_{n>=1} 1/a(n) = 5989/360 - 5*Pi^2/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*Pi^2/6 - 128*log(2)/3 + 7741/360. (End)
|
|
MATHEMATICA
|
Table[3(n+1)Binomial[n+5, 6], {n, 30}] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {6, 63, 336, 1260, 3780, 9702, 22176, 46332}, 30] (* or *) CoefficientList[Series[(3(2+5x))/(x-1)^8, {x, 0, 30}], x] (* Harvey P. Dale, Nov 28 2021 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|