The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027811 a(n) = 3*(n+1)*binomial(n+5,6). 1
 6, 63, 336, 1260, 3780, 9702, 22176, 46332, 90090, 165165, 288288, 482664, 779688, 1220940, 1860480, 2767464, 4029102, 5753979, 8075760, 11157300, 15195180, 20424690, 27125280, 35626500, 46314450, 59638761, 76120128 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Number of 12-subsequences of [ 1, n ] with just 5 contiguous pairs. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1). FORMULA G.f.: 3*(2+5x)*x/(1-x)^8. a(n) = C(n+1, 2)*C(n+5, 5). - Zerinvary Lajos, May 26 2005; corrected by R. J. Mathar, Feb 10 2016 From Amiram Eldar, Feb 03 2022: (Start) Sum_{n>=1} 1/a(n) = 5989/360 - 5*Pi^2/3. Sum_{n>=1} (-1)^(n+1)/a(n) = 5*Pi^2/6 - 128*log(2)/3 + 7741/360. (End) MATHEMATICA Table[3(n+1)Binomial[n+5, 6], {n, 30}] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {6, 63, 336, 1260, 3780, 9702, 22176, 46332}, 30] (* or *) CoefficientList[Series[(3(2+5x))/(x-1)^8, {x, 0, 30}], x] (* Harvey P. Dale, Nov 28 2021 *) CROSSREFS Sequence in context: A158987 A339239 A055005 * A027950 A184447 A053700 Adjacent sequences: A027808 A027809 A027810 * A027812 A027813 A027814 KEYWORD nonn,easy AUTHOR Thi Ngoc Dinh (via R. K. Guy) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 21:07 EST 2023. Contains 367594 sequences. (Running on oeis4.)