login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070960
a(1) = 1; a(n) = n!*(3/2) for n>=2.
12
1, 3, 9, 36, 180, 1080, 7560, 60480, 544320, 5443200, 59875200, 718502400, 9340531200, 130767436800, 1961511552000, 31384184832000, 533531142144000, 9603560558592000, 182467650613248000, 3649353012264960000, 76636413257564160000, 1686001091666411520000, 38778025108327464960000
OFFSET
1,2
COMMENTS
Let g be a permutation of [1..n] having, say, j_i cycles of length i, with Sum_i i*j_i = n; sequence gives Sum_{g} Sum_{i} (j_1 + j_2). - N. J. A. Sloane, Jul 22 2009
a(n) is the greatest integer that can be obtained from the integers {1, 2, 3, ..., n} using each number at most once and the operators +, -, *, /.
LINKS
Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 4.
FORMULA
E.g.f.: x*(2+x)/(1-x)/2. - Vladeta Jovovic, Dec 15 2002
a(n) = A245334(n,n-2), n > 1. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=1} 1/a(n) = (2*e-1)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2/(3*e). (End)
a(n) = A000142(n) + A001710(n) for n>=2. - Alois P. Heinz, Feb 20 2024
EXAMPLE
a(5) = 180 because the greatest number we can obtain using 1, 2, 3, 4, 5 is 180 which is (1+2)*3*4*5.
MATHEMATICA
s=3; lst={1, s}; Do[s+=n*s+s; AppendTo[lst, s], {n, 1, 5!, 1}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Join[{1}, (3*Range[2, 20]!)/2] (* Harvey P. Dale, Jun 15 2022 *)
PROG
(Haskell)
a070960 n = if n == 1 then 1 else 3 * a000142 n `div` 2
a070960_list = map (flip div 2) fs where fs = 3 : zipWith (*) [2..] fs
-- Reinhard Zumkeller, Aug 31 2014
(PARI) a(n) = if (n==1, 1, n!*3/2); \\ Michel Marcus, Dec 03 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Koksal Karakus (karakusk(AT)hotmail.com), May 24 2002
EXTENSIONS
Edited by N. J. A. Sloane, Jul 22 2009
STATUS
approved