login
A002690
a(n) = (n+1) * (2*n)! / n!.
(Formerly M3665 N1491)
4
1, 4, 36, 480, 8400, 181440, 4656960, 138378240, 4670265600, 176432256000, 7374868300800, 337903056691200, 16838835658444800, 906706535454720000, 52459449551308800000, 3245491278907637760000, 213796737998040637440000, 14940619102451310428160000, 1103945744792235714969600000
OFFSET
0,2
COMMENTS
Coefficients of orthogonal polynomials.
E.g.f. for series with alternating signs: x/(1+4*x)^(1/2).
Central terms of triangle A245334. - Reinhard Zumkeller, Aug 30 2014
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. E. Salzer, Orthogonal polynomials arising in the evaluation of inverse Laplace transforms, Math. Comp. 9 (1955), 164-177. [Annotated scanned copy]
FORMULA
E.g.f.: (1-2*x)/(1-4*x)^(3/2).
a(n) = 2^n*n!*JacobiP(n, -1/2, -n+1, 3). - Peter Luschny, Jan 22 2025
MAPLE
with(combstruct):bin := {B=Union(Z, Prod(B, B))}:
seq (count([B, bin, labeled], size=n+1)*(n+1), n=0..17); # Zerinvary Lajos, Dec 05 2007
A002690 := n -> 2^n*n!*JacobiP(n, -1/2, -n+1, 3):
seq(simplify(A002690(n)), n = 0..18); # Peter Luschny, Jan 22 2025
MATHEMATICA
Table[((n+1)(2n)!)/n!, {n, 0, 20}] (* Harvey P. Dale, Sep 04 2011 *)
PROG
(PARI) a(n)=(n+1)*(2*n)!/n!
(Magma) [(n+1) * Factorial(2*n) /Factorial(n): n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
(Haskell)
a002690 n = a245334 (2 * n) n -- Reinhard Zumkeller, Aug 30 2014
CROSSREFS
a(n) = (n+1) * A001813(n) = 2^n * A001193(n+1).
Cf. A245334.
Sequence in context: A135906 A197446 A291313 * A370927 A094417 A349504
KEYWORD
nonn,easy,nice
EXTENSIONS
Edited by Ralf Stephan, Mar 21 2004
STATUS
approved