|
|
A002688
|
|
Denominators of coefficients for repeated integration.
(Formerly M4158 N1728)
|
|
2
|
|
|
6, 24, 45, 480, 10080, 24192, 907200, 1036800, 239500800, 106444800, 9906624000, 475517952000, 15692092416000, 4828336128000, 8002967132160000, 4268249137152000, 51607012294656000, 1202139815804928000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 1..442
Caroline Moosmüller, Tomas Sauer, Polynomial overreproduction by Hermite subdivision operators, and p-Cauchy numbers, arXiv:1904.10835 [math.NA], 2019.
H. E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., 38 (1947), 331-336.
H. E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., 38 (1947), 331-336. [Annotated scanned copy]
|
|
FORMULA
|
a(n) = denominator(1/n!*(Sum_{k=1..n}((stirling1(n,k))/((k+1)*(k+2))))). - Vladimir Kruchinin, Apr 06 2016
|
|
MAPLE
|
seq(denom(int(int(mul(p-i, i=0..(n-1)), p=0..p), p=0..1)/n!), n=1..30); # Herman Jamke (hermanjamke(AT)fastmail.fm), Aug 01 2010
|
|
MATHEMATICA
|
Table[Denominator@ (Sum[StirlingS1[n, k]/((k + 1) (k + 2)), {k, n}]/n!), {n, 20}] (* Michael De Vlieger, Apr 06 2016 *)
|
|
PROG
|
(Maxima)
a(n):=denom(1/n!*(sum((stirling1(n, k))/((k+1)*(k+2)), k, 1, n))); /* Vladimir Kruchinin, Apr 06 2016 */
|
|
CROSSREFS
|
Cf. A002687.
Sequence in context: A062768 A161333 A253770 * A083212 A120572 A000056
Adjacent sequences: A002685 A002686 A002687 * A002689 A002690 A002691
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Aug 01 2010
|
|
STATUS
|
approved
|
|
|
|