login
A002688
Denominators of coefficients for repeated integration.
(Formerly M4158 N1728)
2
6, 24, 45, 480, 10080, 24192, 907200, 1036800, 239500800, 106444800, 9906624000, 475517952000, 15692092416000, 4828336128000, 8002967132160000, 4268249137152000, 51607012294656000, 1202139815804928000
OFFSET
1,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Caroline Moosmüller and Tomas Sauer, Polynomial overreproduction by Hermite subdivision operators, and p-Cauchy numbers, arXiv:1904.10835 [math.NA], 2019.
H. E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., 38 (1947), 331-336.
H. E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., 38 (1947), 331-336. [Annotated scanned copy]
FORMULA
a(n) = denominator((1/n!) * Sum_{k=1..n} Stirling1(n,k)/((k+1)*(k+2))). - Vladimir Kruchinin, Apr 06 2016
MAPLE
seq(denom(int(int(mul(p-i, i=0..(n-1)), p=0..p), p=0..1)/n!), n=1..30); # Herman Jamke (hermanjamke(AT)fastmail.fm), Aug 01 2010
MATHEMATICA
Table[Denominator@ (Sum[StirlingS1[n, k]/((k + 1) (k + 2)), {k, n}]/n!), {n, 20}] (* Michael De Vlieger, Apr 06 2016 *)
PROG
(Maxima)
a(n):=denom(1/n!*(sum((stirling1(n, k))/((k+1)*(k+2)), k, 1, n))); /* Vladimir Kruchinin, Apr 06 2016 */
CROSSREFS
Cf. A002687.
Sequence in context: A062768 A161333 A253770 * A362803 A083212 A120572
KEYWORD
nonn,frac
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Aug 01 2010
STATUS
approved