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four digits of the final result. The result has been tabulated to 3089D; the final
digit is unrounded.

Running time for the 30931) was approximately thirteen minutes.. The pro-
gramiming takes account of the number of zeros generated to the right of the
decimal point in each factor, so that the number of operations required for each
term in the series decreases. This leads to the following statement—if the time
to compute 7 to m digits is ¢ units, then the time to produce km digits is roughly
k% units; this holds true as long as the calculation is contained in hlgh speed
storage.

The following table gives a count of-éach of‘the dlgrts in 7.~ o

1) (2 (3) (4) (5)
1-3090 1-2036 2037-3090 4)/(3)
0 269 184 85 .46
1 315 ' 213 102 A7
2 314 210 104 .50
3 276 - 191 85 45
4 322 198 124 .63
S 326 211 115 54
6 311 . 204 107 .52
7 297 200 97 49
8 318 207 111 .54
9 342 218 124 57
> 3090 2036 1054 .52

S. C. NICHOLSON
J. JEENEL

Watson Scientific Computing Laboratory
612 West 115th Street
New York 27, New York

1. The IBM-Naval Ordnance Research Calculator, now located at Naval Proving Ground, .
Dahlgren, Virginia.

2. GEORGE W. REITWIESNER, ““An ENIAC determination of = and e to more than 2000 decimal
places,” MTAC, v. 4, 1950, p. 11-15.

3. For a description of the NORC checking system, see W. J. ECKERT & R. B. JoONES, Faster,
Faster, McGraw-Hill Book Company, New York, 1955, p. 98-104.
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Abstract. In finding f(¢), the inverse LAPLACE transform of F(p), where (1)
c+joo
= (1/27]) er*F(p)dp, the function F(p) may be either known only

c—jo

mnmncally or too complicated {or evaluating f(£) by CAucHY’s theorem. When

;:-v;-_...u: ol without a canstant term, in the variable 1/p,
zl(m; (c — j=,¢+ j=), one may N

F(p) behaves like a
find f£(¢) numerically using new quadrature
formulas (analogous to those employing the zeros of the LAGUERRE polynomials
in the direct Laplace trans{orm). Suitable choice of p; yields an n-point quadrature

e —— . ——— ——— ——

palx) =

1, ---,m
malizatig
tegral €
normaliz

(1/273)

rence for
for n>3
The quz
1 =11

I. In
tion of {
£, for

(1)

Formul:
tity ¢ is
points ¢

for f(2)

@
e—cl
0

An
present

The
transfo
residue
integra
and ths
F(p) r
and na
one wi'
and pa
differe:
some b
simple
and sir
enougi
ential

e —— T



LSS

CE TRANSFORMS ' ORTHOGONAL POLYNOMIALS IN INVEKSE LAPLACE TRANSFORMS 165
ited to 3089D; the final formula that is exact when p2n is any arbitrary polynomial of the (27)th degree
c+joo
rteen minutes. The pro- in x =1/p without a constant term, namely: (2) (1/27rj)f _J €2 (1/p)dp
4 . . . c—joo
ited to the right of the. d
-:tLi(ons requi;:ai for eacl(la = 2 Ap0(1/p). In (2), %: = 1/p; are the zeros of the orthogonal polynomials
atic i=1
statement—if the time i . [fotie ) .
uce km digits is roughly Palx) = I_Il (x — %) where 3) (1/277'_7)‘[*)_ ep(l/P)#n(l/P) (1/p)idp = 0,2 =0,
ontained in high-speed ILv,m—1 and 4,m correspond _ to the CHRISTOFFEL numbers. The nor- -
4 Te- - = o — = alization P,(1/p) ="(4n —2)(4n —6) - < 6p.(1/), n 2> 2, produces all. in-
; in . tegral coefficients. P.(1/p) is proven to be (— 1)"e_Pp"d"(e”/p")/dp". The
) s normalization factor is proved, in three diFfer_ent ways, to be given by 4)
ct+joo
3090 4)/(3) : (1/27rj)f .] e?(1/p)[P.(1/p) Pdp = 3(—1)". Proofs are given for the recur-
! A . c—~joo .
;2 i? rence formula (5) (2n—3)P,(x) = [(4n—2) (2n—3)x+2]P,,_1(x) +Q@2n-1)P,_, (x),
4 _'50 _ for >3, and the differential equation (6) x2P," (x)+ (x—=1)P,/(x) —1n*P,(x) =0.
5 45 The quantities p;™m, 1/p:™ and 4;™ were computed, mostly to 6S — 83, for
4 .63 i=1(1)n, n = 1(1)8. |
‘77 -24 I. Introduction: Occurrence of inverse Laplace transforms. F or a given func-
7 ‘43 tion of p, F(p), which is the direct Laplace transform of some unknown function
1 54 f(@), for t > 0, one usually finds the f(¢) from the following explicit expression :
1 57 . 1
. c+jo0
s 52 f (1) 10 = — 1 gy
L * LI o) e—joo
S. C. Nicrorson : Formula (1) is known as the inverse Laplace transform of F(p). In (1) the quan-
J. JEENEL tity ¢ is a real constant -0 that is greater than the real part of all the singular
points of F(p). In practice ¢ is usually positive, but ¢ can be negative as long as
for f(t) satisfying Dirichlet’s conditions in any finite positive interval the integral

Naval Proving Ground,

f ) e~*'f(£)dt is absolutely convergent (H. S. CArRsLAW and J. C. Jagcer [17).
0

A note by the referee follows this paper and indicates relations between the
present work and work published elsewhere.

The examples treated in most textbooks on operational calculus and Laplace
transforms contain such functions F(p) that their poles and branch points (and
residues also) are obtainable without too much difficulty, and the inversion

0 more than 2000 decimal

T & R. B. JoNEs, Faster,

| ——— ———

. integral in (1) is evaluated by suitable deformation of the path of integration,

e Numerlcal P and tha sen af M. T 1] ids il it hicrgamesonniiess otner examples where
lnsforms F(p) might be too complicated to yield explicit information about the location
and nature of its singularities without a prohibitive amount of labor. For instance,

of F(p), where (1) , one will recall that in most textbook examples treating the solution of ordinary

and partial differential equations by operational means, the original system of

cither known onl . . . . . . .
only differential equations is transformed into a system whose solution F(p) is usually

Y's theorem. When some known elementary function or a. very extensively tabulated function of a
i the variable 1/p, simple differential equation (like a Bessel function), so that its analytic character
4 liew quadrature and singularities are well known. But in actual practice one might not be fortunate
UERRE polynomials ! enough to obtain such a comparatively simple F(p). Thus the transformed differ-
n-point quadrature ' ential equations might not yield a known function. Instead it might be amenable
-
¥s
-
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only to solution in series or numerical integration, with an F(p) that is given as
a tabulated function of p. Also, the solution F(p) might be given explicitly in
closed form as a combination of integrals of such complicated analytic expressions
that it might be easier to evaluate it for different numerical values of p than to
find its poles, residues, and branch points. _ ' o

The purpose of this present article is to discuss the properties of a new set
of orthogonal polynomials which can be the basis for convenient formulas for

approximating f(¢) in (1) for different positive values of ¢ when one has an F(p)

that is too complicated to show its analytic character, but which can be calculated
for any p.

All further discnssion will now be for-F(p) assumed to be exactly of the -

m
a, . Ly . .
form 3 ;:, Le., a polynomial in 1/p without a constant term.
r=1
To obtain a definite integral without a parameter ¢ in the exponential term,
which is the “weight function,” let Pt = w.in (1), so that we obtain

1 c1t+jo
(1) 70 =;ﬁf " euF(?)du,

c1—jo
where F(;) is still a polynomial in 1/x, without a constant term.

II. Use of orthogonal polynomials. At this point one may recall the application
of the theory of orthogonal polynomials to quadrature formulas for definite
integrals where the integrand is the product of a preassigned weight function and
a polynomial P(t). There it is possible io emnlov the value of P(t) at n fixed
irregularly spaced points ¢;, 1 = 1,2, ---, n, such that the resulting quadrature
formula is exact when P(¢) is any arbitrary polynomial of (2 — 1)-th degree.

Thus for the direct Laplace transform of P(t), namely fm e ?'P(t)dt, which is
0

essentially f e~*Q(8)dt for polynomial Q(¢), the points £; are taken equal to the
0

zeros of the Laguerre polynomials, which have been tabulated extensively (H. E.
SALZER and R. Zucker [27). In the present case, even though we are not dealing

with a polynomial in p, we can still solve the problem of finding a Gaussian-type’

quadrature formula for (1) of approximately double the degree of accuracy of an
ordinary quadrature formula based upon the same number of equally spaced
points.

Thus let p».(1/p) be any arbitrary (2n)-th degree polynomial in the variable

1/p, which vanishes at 1/p = 0. Consider # distinct points 1/p;, 4 = 1,2, -+, n
other than 1/p =0 and construct the (n + 1)-point Lagrangian polynomial
approximation (of the nth degree in 1/p), to ps(1/p), based upon the points 1/p,,
1=1,2,---,mand 1/p = 0. The (n 4 1)th point 1/p = 0 is needed in order to
provide for the property that p2n(1/p) vanishes at p = . We have for this
polynomial approximation LD (1/p) the explicit expression

1 n+1 1 1
) L(n+tD) (._) = Li("'H)() Sn(_) ’
(2) p E p P

ORTHOGON A

where on the right h
(3) L

the J]’ denoting the
no (n + 1)-th term |
is written with # + {
coefficients L™ (1/p
factor p;/p.)
_Following the me;
nomial in 1/p, name]
1=1,2,---,n and

as a factor. Writing

(4) P2n (
it follows that
1 ctjo ‘
—_— P
(5) 27'_] e jeo 8 P2n (

Thus if the second ter
an n-point quadrature
1/p without a constan

1

(6) 7.

where the “Christoffel

9

A sufficient condi:

1/p)p-(1/p) with res;

1 ctij=
G

(8)

ﬁj c—jx

The necessity of (&

where pn-1(1/p) is any
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where on the right hand side of (2)

n41 n41
o re (1) =1 (L 1) /1 (1= 1),
P k=1 NP Dk k=t \Pi Dk

the ]I’ denoting the absence of k = 7. In (2), Pnt1is ©, so that there is actually
no (z + 1)-th term in (2) and LAY (1/p) is not used. (The summation in (2)
is written with # + 1 instead of # to avoid confusion with the (# — 1)-th degree
coefficients L;™(1/p) which differ from the L") (1/p) by not having the
factor pi/p.) i .

Following the method in G. SzeGo [37, we consider the (2m)-th degree poly-

nomial in 1/p, namely, p2.(1/p) — L+ (1/p) which vanishes at 1/p =0, 1/p.,
i=1,2, -, n and thus has

L (1) = (1o 1)
27 \3) =3 \5 75
as a factor. Writing

0 () =2 (5) +50(5) ().

it follows that

1 c+jwo 1 1 c+jo 1
© g [T o () a0 = 2 oz ()

. AT e e—ges P/

St e(3)ma(3)
a . P=pDal — n— = ) dp.
ot T30\ \G) %

_Thus if the second term in the right member of (5) always vanishes, (5) will be

an n-point quadrature formula that is exact for any (2#)-th degree polynomial in
1/p without a constant term, namely, :

(6) LT, (l)dé > 4.0 (1)
— €Pp2n | — = o | — ),
21j Jeiw P ? i==1 o bi

where the ““Christoffel numbers”” 4, are given by [6] :

1 [etis 1
) AW = — e? L, { — ) dp.
) 27] Je—jo p

A sufficient condition for (6) to hold is obviously the “orthogonality” of
(1/p)p(1/p) with respect to any arbitrary p,_,(1/p), namely,

1 ctio 1 1 1)¢
— L = -}y dp=0, 1=0,1,---,n—1.
®) 27j Je—iw ¢ b p (p) (p) p t=0 ”

The necessity of (8) is also obvious from (6) by choosing

pon(1/p) = (1/P)Pu(1/P)par(1/P)

where p,_1(1/p) is any arbitrary polynomial in 1/p of the (7 — 1)-th degree.
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Hence the points 1/p:, now denoted by 1/p,™, are the zeros of a certain set
of orthogonal polynomials in the variable 1/p. '

The condition of orthogonality (8) is also mathematically equivalent, in
terms of actual polynomials (by setting x = 1/p), to having a polynomial of the

nt degree ¢,(x) which is orthogonal to any pa—1(x), with weight function €'/=/x, -

where the path of integration is a circle of radius 1/2¢ whose center is at (1/2¢, 0).
If the polynomial p,(1/p) is written as

1\ 1\~ (1)71—2 (1)
- bn-] - = b’!— - +"' b - +b1
(p) + (p/ ol REAV: ’ =

the determination of b;,Z = 0, 1, - - -, #» — 1, to satis{ly the conditions of orthogo-
nality (8), making use of

1 cti®  gp 1

;j c—joo pm-{-l

T om!

is in the solution of this system of linear equations:

-

1 bﬂ_.l bn._Q bl bo__
I e TR TR VA TR
1 bn—l bn—2 ' bl bO_
O YDt al (n—1)!+"'+2_!+1_1_-0
1 . bn—l bﬂ—2 bl bO _
L@n— D! (2n-2)! P TR R ey R

For numerical work it is somewhat easier to solve (9’) in the form

(1 4 #bpy + n(n — Dbz + -+ + nlby + nlby =
14+ 4+ Dopy + (n 4+ Dnbas+ -+
© | + (m4+1) -3+ (1) 20=0
L+ (25 — Dbos + @1 — 1)@ = Dbag + -+
| +@n—1) - (n4 Db+ 2n — 1) -+ nby = 0.

IIT. Exvlicit exoression for orthogonal polynomials. It is convenient to nor-
malize the polynomials py(x), where x = 1/p, by multiplying pa(x), for n > 2,
by (4n — 2)(4n — 6) - -+ 6. This normalization produces polynomials with all
coefficients integral (proven below) and it is not the usual normalization by

multiplication by
Gl G el
— —1P. = dp| .
|:27rj c—jw epp p P p

Denoting (4n — 2)(4n — 6) - -+ 6pa(1/p) by Pa(1/p) forn 2> 2, and p,(1/p) by

Py(1/p), one can avoid the labor of solving (9”) or (9) directly by showing that

e ._N...-,.,_,__..._-n-"

e ——
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P.(1/p) has the following more elegant definition:

o (3) - corer £(2)

That (10) yields the leading coefficient of 1/p™ in P, (1/p), namely

1, for n =1,
(4n — 2)dn —6) --- 6, for n > 2,

is obvious by induction. To prove the orthogonality property, or (8), it suffices
to prove the vanishing of

1 et 1 oo E VN ( pymgrpm & (2
(A) 2w Jeie € ;[(—1)6 P dp"(p")][( 1)me=rp dp’"<pm)]dp

for m < m. This last expression is written as

(_1)m+nfc+i°‘° et ar (e_p_) ﬂ(ﬁ)
(B) 27!'] oo erp dP" n dpm pm dpv

and after integrating by parts m times, noting that the integrated parts always

vanish, we have
(—1)’"(——1)m+"f°+m dr [ g ptn ( )]
275 c—iwo dp™ apr
which by LEIBNITZ's rule is expressible as
_1 __1 m+n c+;oo m dm—r+n » D
oy (ZunEnme ( ) (e-rpmin) (6_ Z 3
27('] _]w — dpr dpm—r+n Pn pm

©)

Application of Leibnitz’s rule a second time to

dpr (6 ppm+n—l)

in the above and cancellétion of e?/p™, yields

— 1) (—1)mtn ctjo ™ n;+n — 1
® S LTEC) £ o () (7 )]
27['] e=in g \7 s=0 N

. dm—r-i-n )
(]Jnm—r-}-n ( dp
Now we integrate by parts (m — r + n) times each term of the above double
summation. The integrated part will always vanish since it will have a factor of
1/p to at least the first power. Furthermore, at some stage in the partial integra-
tion of each term, that stage varying with the term, the integral part will also
vanish if m < n. This last follows because the lowest power of ¢ is positive

or zero, since s can equal at the most » which can equal at the most m < n — 1.
Then in the integration by parts the positive or zero power p*~1=*, for each value

e . . — L T LR
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of s between 0 and 7, would always be eventually annulled because the initially
occurring differential operator d™*+"/dpm™trisof orderm —r +n>n —1 — s
- even for the highest valueof n — 1 — swhens = 0 (duetom —r +n>n —1
for every 7 between 0 and ). Thus (E) vanishes, which proves (10), and estab-
lishes at the same time that this normalization yields all integral coefficients

for P,.(1/p).
IV. Normalization factor. To obtain the normalization factor, which turns out

to be given by
1 ctjo 2 .
“ o llp, ( Yoo =3

_—(11) - E e pL

we repeat the preceding argument for m = n and now notice that in the final
integral (E) the lowest power of p*'—= will survive the integration by parts,
because it is equal to 1/p. Retaining in the double summation in (E) only the
single non-vanishing term s = = m = n, we get

(—1)2"+"f‘+""°(2n - 1) 1 ( )
(F) 27j oo n “pdpn \ p ap,

which is integrated by parts z times, the integrated part always vanishing, to give

(_1)2n+2n(2n_ 1 etgoo p(_l)n.2.3 oo (n—Dn
(G) _21rj " )n! j: e € o dp.
But (G) is .
- 2n — 1 1 (=1)"Qrn —1)2n —2) ---n 1
(_l)n( n )n!n! 2n)! - n! nint (2n)!

which reduces to (—1)*/2x or 3(—1)", thus proving (11).
From (10), the explicit formula for P,(1/p) is seen to be [7]

f2m—1
" P(l) o (—1)( " )n!

() (e
+ n—1
+ —lw—?(z)(;:; Jumnr
n—r 2 .
G
- ”2(;1)1 + (1)

T o g TPy

———

[
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a recurrence formula
(G. Szegé [8]), namel;
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(14) (2n — 3)Pu(x) =
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normalization factor gi
Multiply (14) by P
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(4n — 2)(2n — 3)

0= -
2]
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V. Recurrence formula. It is easy to obtain the recurrence relation for the
polynomials P,(x) by employing a fundamental theorem about the existence of

a recurrence formula connecting any three successive orthogonal polynomials
(G. Szegé [8]), namely,

(13) P.(x) = (awx + bu)Pa1(x) + caPrs(x).

Thus a, is immediately seen to be 4n — 2. Equating constant terms in (13), one
finds ¢, = b, + 1, and after substitution into thc equation derlved from the
coefficicats-of x, one obtains~ - ==

2 _2n—1
m—3" " 22— 3’

n =

so that the recurrence formula satisfied by P,(x) is seen to be [9]

(14) (27— 3)P.(x) = [(4n — 2)(2n — 3)x + 2]P.1(x) + (21 — )P, _o(x),
for n > 3.

From (14) and (8) only, without making use of (10), one can again find the
normalization factor given in (11), through the following inductive argument:
Multiply (14) by P._»(x) and then operate with

1 ctjo 1
— er — ... dp
2w) Je—iw P

to obtain (making use of (8)):
—_ — ( c+jo0
0 = (411 2)(?” S)f » epfl_P1Xv_1(l)._1_Pn-2(1)dp
27 e—jw P v/ p b2

(211 — 1) etie [ ( 1 ):I’
+0+ —- P,_.| - dp.
f—]ao p P

Denoting the left member of (11) by F,, still making use of (8) to replace in the
first of the above integrqls (1/p)P._»(1/p) by

1 /1N 1 B4
SENGST Dpeed G )

one now obtains

n—2)2n — 3
0 = E{’L_lﬁ_) Fuoiv 4 2n — 1)F,_,,
4n — 6 :

or Fly = — F,_u. Sinee Fy = — ), (11) lollows by induction.
The normalization given in (11) can be scen in a third way, directly from the
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explicit formula for P,(1/p) in (12). For, in view of (8), it suffices to consider only

. 1 cHim gp (__1)271(2”_1) (1)
H — — 1P| — ) dp,
(H) 2rj Je—iw p Pp" " P b

n
or ‘ o
. 2n—r—1 .
2"(211—_,1) - (=1 (7)( n—r )(n—-r)!..
(0 (=1 n "Eo 2n — r)! r
or
=1\ & =) (a=r 1) @rer=1)- (14 Dn
(J)( n )"!Eo( D r! (27z—r)(2n—r_—1)---(n+1)n!'

which, after cancellations, is written as

2n—1)(2n—2)---n n n(n—1) - (n—r+1)(n—r)!
(n—71)!n! 2n—r r! ’

® T (=1

r=0
or

1 v—1)Q2n—2)--n
-7 (n — r)l!

L) nE (-1

r=0

3

and this, in turn, is expressible in the form

M) - 3(=1)"

% i (2n—0)(2n.—1)(2n—2)- - Qu—[r—1]D2n—[r4+1])--- (2n——n).
r=0 r=0)(r—1) - =Lr=1D=[r+1])---r—n)

In (M), the :(—1)" is multiplied by the sum of the coefficients of the Lagrangian

interpolation polynomial for the (# + 1) points 0,1, ---, n, for the variable

equal to 2z. But that sum is identically equal to 1, i.e., for any value, 2% or
otherwise. Thus we obtain once more ¥(—1)" for the normalization. ,

VI. Integral coefficients. It may be of interest to show that (14) alone, without
any knowledge of (10), implies that P(x) has integral coefficients. We prove
this by noting that P..1(x) will have integral coefficients if P, (x), m < n, has
integral coefficients and the following identical polynomial congruence holds
form =n+1: '

(15) 2P, (%) + 2 — 1) Ps(x) =0 (mod (2im — 3)).
Now the existence of integral coefficients of P,.(x) and congruence (15) can be

verified for the first few values of s We then show that il (13) holds for some
particular m = n, it holds for m = n + 1, provided P.(x), m <n — 1, has

B

T e e ermnym T T
AP IR A T T I T LT i) s = 7 -

ORTHOGONAL Pt

" integral coefficients, or, 1
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integral coefficients, or, in other words, that
2P.(x) + 2n + 1)P,_1(x) =0 (mod (2n — 1)).

This last congruence, by (14), is equivalent to

Znt Pa1(x) + 2(2%—3) Pos(x) + 2n +1)Pui(x) =0 (mod (22 — 1)),
or to » - B B )
(2n — 1) 2(2n -1 B
n—3 n—l( ) + 5 P, o(x) =0 (mod 27 — 1)),

which in turn is expressible as

2n — 1) [ (@21 = DPur(®) + 2Pns(x)

F— ] =0 (mod 2z — 1)),

or

(21 — 1) [ 24+ (27 = HPua(x) + 22— 1 — (2 — 3_))pﬂ_2(x)] 0
2n — 3
(mod (2n — 1)).

But under the assumptions that (15) holds form = #,and that P,,(x),m < n — 1,
has integral coefficients, the last quantity in brackets is a polynomial with integral
coefficients, which shows that the last congruence is satisfied identically in x.
Thus (15) holds for # = n 4+ 1 and P,1(x) has integral coefficients. We proceed
in this way to every n. There is a slight subtlety in the argument of this induction
in the sense that the integral coefficients of P, (x) up to m = n — 1 only are
needed to go from m = ntom = n + 1 in (15), but then use is made of the in-
tegral coefficients of P,(x) in using (14) with # -+ 1 in place of =.

VII. Differential equation. It is easy to show that P,(x) satisfies the differ-
ential equation

(16) $P,"(x) + (x — 1)Pu’(x) — #2Pa(x) = 0.

Thus one merely expresses (12) in the form

(=) — 1) (2 — 22) -+« (2 — 7 — 1) x]

7!

’
r=l

and then observes that (12’) is equivalent to the automatically terminating
“infinite series.”

(12) P = ¥ an,
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where S
‘ I ) S
ay = (—1* and ra, = — (n* —r — lz)a,_l, for r>0. 2
[ S
Working hackwards from (12”), by equating coefficients of x™, one sees that §
'(12") must arise from (16). '
VIII. Explicit expressions for polynomials. Because these polynomials P,(x)
are of fundamental importznce, and their rele in the inverse Laplace transform - - - - 2 4+
is comparable to the role of the Laguerre polynomials in the direct Laplace trans- ' :5
form, their explicit expressions are given below for n = 1(1)12: 3
\% 3
P1(x) =X — _1_ §
Py(x) =6x*—4x+1 g
Py(x) = 60x® — 36x* + 9x — 1
Py(x) = 840x* — 4803 + 120x* — 16x + 1 ?
Py(x) = 15120x® — 8400x* +- 2100x* — 300x* + 25x¢ — 1 %
Py(x) =3 32640x° — 1 81440x5 + 45360x* — 6720x° + 630x* — 36x + 1 Z §
. 2 S
Pi(x) = 86 48640x7 — 46 56960x° + 11 64240x% — 1 76400x* + 17640 = o
VECAEAN SRR P b 3
t . —.1176x%* + 49x — 1 ' i | % S
Py(x) = 2594 59200x® — 1383 78240x7 + 345 94560x° — 53 22240x° 25+,
4+ 5 54400x* — 40320x% 4 2016x% — 64x 4 1 O g I o
[evd
Py(x) = 88216 12800x° — 46702 65600x® + 11675 66400x” — 1816 21440x° % 3
’ + 194 59440x5 — 14 96880x* 4 83160x® — 3240x2 4+ 81x — 1 2 s
(o]
Pio(x) = 33 52212 86400 — 17 64322 56000x° + 4 41080 64000x® — 69189 E g
12000x7 + 7567 56000x% — 605 40480x5 + 36 0\)600354 — 1 58400x® |1 = -
+ 4950 — 100x + 1 | -
Il ‘o
Py (x) = 1407 92940 28800x" — 737 48683 00800x° +- 184 37_170 75200x9 ﬁ 3
— 29 11132 22400x8 4 3 23459 13600x7 — 26637 81120x° + 1664 &= Z
86320x5 — 79 27920x* + 2 83140x® — 7260x% 4+ 121x — 1 §
S
Piy(x) = 64764 75253 24800x'2 — 33790 30566 91200x™ -+ 8447 57641 ”2800'»“’ ’
— 1340 88514 56000x° + 150 84957 88800x8 — 12 70312 2432027 s+
- 82335 05280x% — 4151 34720x® + 162 16200x* — 4 80480x° v ) o~ o
+ 10296x% — 144x + 1. \ =S
_ N \ o
IX. Zeros and Christoffel numbers. In the\umerical table below there are.'| g
given the values of the reciprocals of the zeros‘of P. (x) or pi™, the zeros of . =
P.(x), or 1/p:™, and the corresponding Chrlstoffef‘ numbers 4™, for n = 1(1)8.
Use of these quantities in the quadrature formula (6) above can give theoretically i
A exact accui-cy for any polynomial in 1/p (with no censtant term) up to the 16th .
L degree. However, the fact that these tabulated values of p:™, 1/p:™ and 4™ \‘.| ?
are correct to only about a unit in the last significant ﬁgure that is given, must \-\ : -
<N
= :‘f C \/
b 1|
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be taken into account in any practical example where some upper bound for the
error should be estimated.
HERBERT E. SALZER
Ordnance Corps
Diamond Ordnance Fuze Laboratories
Washington, D. C.
NOTE BY REFEREE

The function F(p) is subject to certain restrictions because it is a Laplace transform. In order
for F(p) to be the Laplace transform of the function f(£) given by (1), it is sufficient that F(p) have
the form (cf. G. Dogtscu [5]):

: F(p) = a/p + Fi(p)/ 7,

- where 5 > 0, a is a constant, and Fi(p) is analytic and bounded in the half plane Re(p) > c.

We assume that this condition is satisfied. Whether this condition is also sufficient for the con-
vergence of the #-point quadrature formula to the true value of f(¢) in (1), when # tends to infinity,
has not been determined. The author makes use here of the fact that the convergence occurs
whenever F(p) is a polynomial in 1/p without a constant term; in fact, the quadrature is exact
for polynomials of degree not greater than 2z, G. SzEGS [10] has shown that under quite general
conditions a Gauss-Jacobi type quadrature formula which converges for polynomials also converges
for a much wider class of functions. Unfortunately his theorems do not seem to apply directly to

the present case because the integral (1) involves a complex valued weight function which is not
of bounded variation.

1. H.S. CarsLaw & J. C. JAEGER, Operational Methods in Applied Mathematics, 2nd edition,
Oxford University Press, 1949, p. 75.

2. H. E. SaLZER & R. ZUCKER, “Table of the Zeros and Weight Factors of the First Fifteen
Laguerre Polynomials,” Amer. Math. Soc., Bull., v. 55, 1949, p. 1004-1012.

3. G. 8zEGH, Orthogonal Polynomials, Amer. Math. Soc., Colloguium Pub., v. 23, 1939, p. 46-47.

4. H. L. Krarr & O. FrINk, “A New Class of Orthogonal Polynomials: The Bessel Poly-
nomials,”” Amer. Math. Soc., Trans., v. 65, 1, 1949, p. 100-115.
5. G. DoEetscH, Theorie und Anwendung der Laplace-Transformation, Springer, Berlin, 1937,
p. 128.

6. The shift in notation from (n-+1) to n in 4;" will cause no confusion after the 4;’s have )

been computed and are ready for use in (6).
7. It was called to the author’s attention by H. L. KRALL that P,(x) = (—1)"y.(x, 1, —1)
where y,(x, a, b) are ‘“‘generalized Bessel polynomials’ (see [4]).
8. G. SzEGO, op. cit., p. 41-42.
9. Formula (14) holds for n = 2 if we define Py(x) = 1.
10. G. SzEG®, op. cit., p. 341-342.

On the Improvement of the Solutions to a Set of
Simultaneous Linear Equations using the ILLIAC

The basic method used for solving simultaneous linear equations on the Uni-
versity of Illinois’ electronic digital computer, the ILLIAC, has already been
described in detail by WHEELER and NasH [1]. The routine currently in use on

the ILLIAC, programmed by Wheeler [27], makes use of the method of elimina- ]

tion to solve the =ct of 7 simultaneous linear equations

n—1

(1) ZG{ij—*‘a{,.:O ’l/.=0,1,2,"‘,71—‘1
=0

in a manner very similar to that used by a human solving such a system.
In brief, the procedure used is as follows: - - :
a) The augmented matrix

i=0,1,2-,n—1

a;;
(2) 01,2 m
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