The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156584 Triangle read by rows, T(n,k) = SF(n-1)/(SF(n-k)*SF(k)) where SF(n) is the superfactorial A000178(n); n>=0, 1<=k<=n-1. 1
 1, 1, 1, 1, 3, 1, 1, 12, 12, 1, 1, 60, 240, 60, 1, 1, 360, 7200, 7200, 360, 1, 1, 2520, 302400, 1512000, 302400, 2520, 1, 1, 20160, 16934400, 508032000, 508032000, 16934400, 20160, 1, 1, 181440, 1219276800, 256048128000, 1536288768000 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: 1, 2, 5, 26, 362, 15122, 2121842, 1049973122, 2050823940482, 15854719559212802, 552278629803518956802, ... . LINKS EXAMPLE {1}, {1, 1}, {1, 3, 1}, {1, 12, 12, 1}, {1, 60, 240, 60, 1}, {1, 360, 7200, 7200, 360, 1}, {1, 2520, 302400, 1512000, 302400, 2520, 1}, {1, 20160, 16934400, 508032000, 508032000, 16934400, 20160, 1}, {1, 181440, 1219276800, 256048128000, 1536288768000, 256048128000, 1219276800, 181440, 1} MAPLE SF := n -> mul(j!, j=0..n): T := (n, k) -> SF(n-1)/(SF(n-k)*SF(k)): seq(print(seq(T(n, k), k=1..n-1)), n=0..9); # Peter Luschny, Jan 24 2015 MATHEMATICA t[n_, m_] = If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]]; b[n_, k_, m_] = If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])]; Table[Flatten[Table[Table[b[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 15}] CROSSREFS Cf. A009963. Sequence in context: A098778 A078122 A128592 * A209424 A129619 A094573 Adjacent sequences:  A156581 A156582 A156583 * A156585 A156586 A156587 KEYWORD nonn,tabl,easy AUTHOR Roger L. Bagula, Feb 10 2009 EXTENSIONS New name and editing, Peter Luschny, Jan 24 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 00:17 EDT 2021. Contains 345080 sequences. (Running on oeis4.)