login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156586
A new q-combination type general triangle sequence based on Stirling first polynomials: here q=4: m=3: t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]]; b(n,k,m)=If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])].
0
1, 1, 1, 1, 4, 1, 1, 20, 20, 1, 1, 120, 600, 120, 1, 1, 840, 25200, 25200, 840, 1, 1, 6720, 1411200, 8467200, 1411200, 6720, 1, 1, 60480, 101606400, 4267468800, 4267468800, 101606400, 60480, 1, 1, 604800, 9144576000, 3072577536000, 21508042752000
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 6, 42, 842, 52082, 11303042, 8738271362, 27671488185602,
346773112532985602, 20244862147392528307202,...}.
The q=2 sequence is A009963.
FORMULA
q=4: m=3:
t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
b(n,k,m)=If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])].
EXAMPLE
{1},
{1, 1},
{1, 4, 1},
{1, 20, 20, 1},
{1, 120, 600, 120, 1},
{1, 840, 25200, 25200, 840, 1},
{1, 6720, 1411200, 8467200, 1411200, 6720, 1},
{1, 60480, 101606400, 4267468800, 4267468800, 101606400, 60480, 1},
{1, 604800, 9144576000, 3072577536000, 21508042752000, 3072577536000, 9144576000, 604800, 1},
{1, 6652800, 1005903360000, 3041851760640000, 170343698595840000, 170343698595840000, 3041851760640000, 1005903360000, 6652800, 1},
{1, 79833600, 132779243520000, 4015244324044800000, 2023683139318579200000, 16189465114548633600000, 2023683139318579200000, 4015244324044800000, 132779243520000, 79833600, 1}
MATHEMATICA
Clear[t, n, m, i, k, a, b];
t[n_, m_] = If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
b[n_, k_, m_] = If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])];
Table[Flatten[Table[Table[b[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 15}]
CROSSREFS
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Feb 10 2009
STATUS
approved