login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156588
A triangle of q factorial type based on Stirling first polynomials: t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]].
0
1, 1, 1, 1, -1, 2, 1, -1, 2, 6, 1, -1, 3, -12, 24, 1, -1, 4, -36, 288, 120, 1, -1, 5, -80, 2160, -34560, 720, 1, -1, 6, -150, 9600, -777600, 24883200, 5040, 1, -1, 7, -252, 31500, -8064000, 1959552000, -125411328000, 40320, 1, -1, 8, -392, 84672, -52920000
OFFSET
0,6
COMMENTS
Row sums are:
{1, 2, 2, 8, 15, 376, -31755, 24120096, -123459768425, 5017134314247168,
-1827769039991244222327,...}.
FORMULA
t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
out_(n,k)=Antidiagonal(t(n,k)).
EXAMPLE
{1},
{1, 1},
{1, -1, 2},
{1, -1, 2, 6},
{1, -1, 3, -12, 24},
{1, -1, 4, -36, 288, 120},
{1, -1, 5, -80, 2160, -34560, 720},
{1, -1, 6, -150, 9600, -777600, 24883200, 5040},
{1, -1, 7, -252, 31500, -8064000, 1959552000, -125411328000, 40320},
{1, -1, 8, -392, 84672, -52920000, 54190080000, -39504568320000, 5056584744960000, 362880},
{1, -1, 9, -576, 197568, -256048128, 800150400000, -3277416038400000, 7167708875980800000, -1834933472251084800000, 3628800}
MATHEMATICA
Clear[t, n, m, i, k, a, b];
t[n_, m_] = If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
a = Table[Table[t[n, m], {n, 0, 10}], {m, 0, 10}];
b = Table[Table[a[[m, n - m + 1]], {m, n, 1, -1}], {n, 1, Length[a]}];
Flatten[%]
CROSSREFS
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Feb 10 2009
STATUS
approved