login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374571
Expansion of g.f. A(x) satisfying A(x) = A(x^2) - x*A(x^2)^2.
2
1, -1, -1, 2, -1, 1, 2, -6, -1, 5, 1, 0, 2, -8, -6, 22, -1, -11, 5, -30, 1, 33, 0, 0, 2, -16, -8, 52, -6, -40, 22, -114, -1, 125, -11, 90, 5, -149, -30, 154, 1, -123, 33, -360, 0, 552, 0, 144, 2, -440, -16, 256, -8, -360, 52, -552, -6, 1176, -40, 576, 22, -1360, -114, 470, -1, -235, 125, -1710, -11, 3387, 90, 486, 5, -3353, -149, 1864, -30, -2152, 154, -2250, 1
OFFSET
0,4
COMMENTS
Conjecture: for n > 0, a(n) is odd iff n = A003714(k) for some k > 0, where A003714 lists Fibbinary numbers whose binary representation contains no two adjacent 1's.
Conjectures. For n > 0, we have the following occurrences:
a(n) = 0 iff n = 11 * 2^k or n = 23 * 2^k,
a(n) = 1 iff n = 5 * 2^k,
a(n) = 2 iff n = 3 * 2^k,
a(n) = 5 iff n = 9 * 2^k,
a(n) = 22 iff n = 15 * 2^k,
a(n) = 33 iff n = 21 * 2^k,
a(n) = 42 iff n = 131 * 2^k,
a(n) = 52 iff n = 27 * 2^k,
a(n) = 90 iff n = 35 * 2^k,
a(n) = 125 iff n = 33 * 2^k,
a(n) = 144 iff n = 47 * 2^k,
a(n) = 154 iff n = 39 * 2^k,
a(n) = 256 iff n = 51 * 2^k,
a(n) = 470 iff n = 63 * 2^k,
a(n) = -1 iff n = 2^k,
a(n) = -6 iff n = 7 * 2^k,
a(n) = -8 iff n = 13 * 2^k,
a(n) = -11 iff n = 17 * 2^k,
a(n) = -16 iff n = 25 * 2^k,
a(n) = -30 iff n = 19 * 2^k,
a(n) = -40 iff n = 29 * 2^k,
a(n) = -114 iff n = 31 * 2^k,
a(n) = -123 iff n = 41 * 2^k,
a(n) = -149 iff n = 37 * 2^k,
a(n) = -235 iff n = 65 * 2^k,
a(n) = -360 iff n = 43 * 2^k or n = 53 * 2^k,
etc., each of which hold for k >= 0.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n, where B(x) is the g.f. of A374570 and C(x) = x + C(x)^2 is the g.f. of A000108, satisfies the following formulas.
(1) A(x) = A(x^2) - x*A(x^2)^2.
(2) A(x^2) = (1 - sqrt(1 - 4*x*A(x))) / (2*x).
(3) A(x^2) = (1/x) * C(x*A(x)).
(4) x^2 = B( x * C(x*A(x)) ).
(5) A(B(x)) = x / B(x).
(6) A(B(x)^2) = C(x) / B(x).
(7) B(x)^2 = B( B(x)*C(x) ).
EXAMPLE
G.f.: A(x) = 1 - x - x^2 + 2*x^3 - x^4 + x^5 + 2*x^6 - 6*x^7 - x^8 + 5*x^9 + x^10 + 2*x^12 - 8*x^13 - 6*x^14 + 22*x^15 - x^16 - 11*x^17 + 5*x^18 - 30*x^19 + x^20 + ...
where A(x^2) = (1 - sqrt(1 - 4*x*A(x)))/(2*x).
RELATED SERIES.
Let B(x) = Series_Reversion(x*A(x)), then
B(x) = x + x^2 + 3*x^3 + 8*x^4 + 27*x^5 + 90*x^6 + 320*x^7 + 1152*x^8 + 4257*x^9 + 15934*x^10 + 60486*x^11 + 231894*x^12 + ... + A374570(n)*x^n + ...
where B(x)^2 = B( B(x)*C(x) ), and C(x) begins:
C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + ... + A000108(n)*x^n + ,,,
where C(x) = (1 - sqrt(1 - 4*x))/2 is the Catalan function.
SPECIFIC VALUES.
A(t) = 4/5 at t = 0.1786763406278486221896028296025274247659944115...
A(t) = 3/4 at t = 0.2209727374872302749773868295900473238254186343...
A(t) = 2/3 at t = 0.2927920532546611624693565662579476873870699464...
A(t) = 3/5 at t = 0.3532836501852252091389612952989266014287213872...
A(t) = 1/2 at t = 0.4540878993396162878365437853450173746622109652...
A(t) = 2/5 at t = 0.5753264646036491718800481741299163550606457682...
A(t) = 1/3 at t = 0.6711059159867924708010090309770441047524321152...
A(t) = 1/4 at t = 0.8063263233032142016966341297674341884930955548...
A(t) = 1/5 at t = 0.8884702348196434968520432792716046325517863531...
A(1/2) = 0.4596569887547343191321148479065626411948116168891503813...
where A(1/4) = (1 - sqrt(1 - 2*A(1/2))).
A(1/3) = 0.6215166290026409046430206750366100166629591510407086872...
where A(1/9) = (3/2) * (1 - sqrt(1 - (4/3)*A(1/3))).
A(1/4) = 0.7159471484203487850228006105062270686816491955635126263...
where A(1/16) = 2 * (1 - sqrt(1 - A(1/4))).
A(1/5) = 0.7747713037551020088783260174094983351988173792698848600...
where A(1/25) = (5/2) * (1 - sqrt(1 - (4/5)*A(1/5))).
A(1/6) = 0.8141931617547219509824463958597943246122338043286847588...
where A(1/36) = 3 * (1 - sqrt(1 - (2/3)*A(1/6))).
A(1/8) = 0.8630723739180924020163457579861333293488991044015651008...
where A(1/64) = 4 * (1 - sqrt(1 - (1/2)*A(1/8))).
A(1/10) = 0.891911395101161792043000371010714789952867553398091597...
where A(1/100) = 5 * (1 - sqrt(1 - (2/5)*A(1/10))).
PROG
(PARI) {a(n) = my(A = 1+x); for(i=0, #binary(n), A = subst(A, x, x^2) - x*subst(A^2, x, x^2) + x*O(x^n) ); polcoeff(A, n)}
for(n=0, 80, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 11 2024
STATUS
approved