OFFSET
1,3
LINKS
G. C. Greubel, Rows n = 1..101 of triangle, flattened
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
FORMULA
Let f(n, k) = (-1)^floor((k + 1)/2)*binomial(n - floor((k + 1)/2), floor(k/2)) then the polynomials P(n, k, x) = f(n,k)*(2*x)^k*(1 - x^2)^(n - k) for an irregular triangle of coefficients.
EXAMPLE
Triangle begins with:
1;
1, -2, -1;
1, -2, -6, 2, 1;
1, -2, -11, 12, 11, -2, -1;
1, -2, -16, 22, 46, -22, -16, 2, 1;
MATHEMATICA
f[n_, k_]:= (-1)^Floor[(k+1)/2]*Binomial[n -Floor[(k+1)/2], Floor[k/2]]; Table[CoefficientList[Sum[f[n, k]*(2*x)^k*(1-x^2)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten
CROSSREFS
KEYWORD
tabf,sign
AUTHOR
Roger L. Bagula and Gary W. Adamson, Oct 04 2006
STATUS
approved