login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123218
Irregular triangle formed by coefficients of polynomials defined by P(n,k,x) = f(n,k)*(2*x)^k*(1 - x^2)^(n - k), where f(n, k) = (-1)^floor((k + 1)/2)* binomial(n - floor((k + 1)/2), floor(k/2)).
2
1, 1, -2, -1, 1, -2, -6, 2, 1, 1, -2, -11, 12, 11, -2, -1, 1, -2, -16, 22, 46, -22, -16, 2, 1, 1, -2, -21, 32, 106, -92, -106, 32, 21, -2, -1, 1, -2, -26, 42, 191, -212, -396, 212, 191, -42, -26, 2, 1, 1, -2, -31, 52, 301, -382, -1011, 792, 1011, -382, -301, 52, 31, -2, -1
OFFSET
1,3
LINKS
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
FORMULA
Let f(n, k) = (-1)^floor((k + 1)/2)*binomial(n - floor((k + 1)/2), floor(k/2)) then the polynomials P(n, k, x) = f(n,k)*(2*x)^k*(1 - x^2)^(n - k) for an irregular triangle of coefficients.
EXAMPLE
Triangle begins with:
1;
1, -2, -1;
1, -2, -6, 2, 1;
1, -2, -11, 12, 11, -2, -1;
1, -2, -16, 22, 46, -22, -16, 2, 1;
MATHEMATICA
f[n_, k_]:= (-1)^Floor[(k+1)/2]*Binomial[n -Floor[(k+1)/2], Floor[k/2]]; Table[CoefficientList[Sum[f[n, k]*(2*x)^k*(1-x^2)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten
CROSSREFS
KEYWORD
tabf,sign
AUTHOR
STATUS
approved