OFFSET
1,3
COMMENTS
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 249, Entry 8(iii).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Michael Somos, Introduction to Ramanujan theta functions, 2019.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
a(n) is multiplicative with a(2^e) = -1 if e>0, a(5^e) = 1, a(p^e) = (p^(e+1)-1)/(p-1) if p == 1, 9 (mod 10), a(p^e) = ((-p)^(e+1)-1)/(-p-1) if p == 3, 7 (mod 10).
G.f.: (25phi(q) phi(q^5)^3 - phi(q)^5/phi(q^5)-24)/40 where phi(q) = 1 + 2(q+q^4+q^9+...).
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(18*sqrt(5)) = 0.245212... . - Amiram Eldar, Jan 28 2024
MATHEMATICA
a[n_]:= SeriesCoefficient[(25*EllipticTheta[3, 0, q]*(EllipticTheta[3, 0, q^5])^3 - (EllipticTheta[3, 0, q])^5/EllipticTheta[3, 0, q^5] - 24)/40, {q, 0, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Mar 07 2018 *)
PROG
(PARI) a(n)=if(n<1, 0, (-1)^n*sumdiv(n, d, kronecker(20, d)*d*(-1)^d))
(PARI) {a(n)=local(A, p, e); if(n<1, n==0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, -1, if(p==5, 1, p*=kronecker(5, p); (p^(e+1)-1)/(p-1))))))}
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Oct 17 2005
STATUS
approved