login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113185
Expansion of (5*phi(q)*phi^3(q^5) - phi^3(q)*phi(q^5))/4 in powers of q where phi(q) is a Ramanujan theta function.
4
1, 1, -3, -2, 1, 1, 6, -6, -7, 7, -3, 12, -2, -12, 18, -2, 9, -16, -21, 20, 1, 12, -36, -22, 14, 1, 36, -20, -6, 30, 6, 32, -23, -24, 48, -6, 7, -36, -60, 24, -7, 42, -36, -42, 12, 7, 66, -46, -18, 43, -3, 32, -12, -52, 60, 12, 42, -40, -90, 60, -2, 62, -96, -42, 41, -12, 72, -66, -16, 44, 18, 72, -49, -72, 108, -2, 20
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 249, Entry 8(ii).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (eta(q^2)^5 * eta(q^10)^7)/(eta(q)*eta(q^4)*eta(q^5)^3 * eta(q^20)^3) in powers of q.
Euler transform of period 20 sequence [1, -4, 1, -3, 4, -4, 1, -3, 1, -8, 1, -3, 1, -4, 4, -3, 1, -4, 1, -4, ...].
a(n) is multiplicative with a(5^e) = 1, a(2^e) = ((-2)^(e+1)-1)/(-2-1)-2 if e>0, a(p^e) = (p^(e+1)-1)/(p-1) if p == 1, 9 (mod 10), a(p^e) = ((-p)^(e+1)-1)/(-p-1) if p == 3, 7 (mod 10).
G.f.: (5phi(q) phi(q^5)^3 - phi(q)^3 phi(q^5))/4 where phi(q)=1+2(q+q^4+q^9+...).
a(n) = (-1)^n * A132069(n).
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(12*sqrt(5)) = 0.367818... . - Amiram Eldar, Jan 28 2024
EXAMPLE
1 + q - 3*q^2 - 2*q^3 + q^4 + q^5 + 6*q^6 - 6*q^7 - 7*q^8 + 7*q^9 + ...
MATHEMATICA
a[n_]:= SeriesCoefficient[(5*EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^5]^3 - EllipticTheta[3, 0, q]^3*EllipticTheta[3, 0, q^5])/4, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 16 2017 *)
PROG
(PARI) a(n)=if(n<1, n==0, (-1)^n*sumdiv(n, d, kronecker(5, d)*d*(-1)^d))
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^5*eta(x^10+A)^7/(eta(x+A)*eta(x^4+A)*eta(x^5+A)^3*eta(x^20+A)^3), n))}
(PARI) {a(n)=local(A, p, e, a1); if(n<1, n==0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==5, 1, if(p>2, p*=kronecker(5, p); (p^(e+1)-1)/(p-1), a1=-3; for(i=2, e, a1=-2*a1-5); a1)))))}
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Oct 17 2005, Mar 20 2008
STATUS
approved