login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132069
Expansion of eta(q) * eta(q^2)^2 * eta(q^5)^3 / eta(q^10)^2 in powers of q.
2
1, -1, -3, 2, 1, -1, 6, 6, -7, -7, -3, -12, -2, 12, 18, 2, 9, 16, -21, -20, 1, -12, -36, 22, 14, -1, 36, 20, -6, -30, 6, -32, -23, 24, 48, 6, 7, 36, -60, -24, -7, -42, -36, 42, 12, -7, 66, 46, -18, -43, -3, -32, -12, 52, 60, -12, 42, 40, -90, -60, -2, -62, -96, 42, 41, 12, 72, 66, -16, -44, 18, -72, -49, 72, 108, 2, 20, 72
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by z(q) = q d/dq log k(q) in Cooper (2009) where k() is the g.f. of A112274. - Michael Somos, Jul 08 2012
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 253 Eq. (8.12)
LINKS
Shaun Cooper, On Ramanujan's function k(q)=r(q)r^2(q^2), Ramanujan J., 20 (2009), 311-328; see p. 312, eq. (1.4).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (5 * phi(-q) * phi(-q^5)^3 - phi(-q)^3 * phi(-q^5)) / 4 in powers of q where phi() is a Ramanujan theta function.
Euler transform of period 10 sequence [-1, -3, -1, -3, -4, -3, -1, -3, -1, -4, ...].
a(n) = -b(n) where b() is multiplicative with b(5^e) = 1, b(2^e) = 2 - ((-2)^(e+1) - 1) / (-2 - 1), b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 9 (mod 10), b(p^e) = ((-p)^(e+1) - 1) / (-p - 1) if p == 3, 7 (mod 10).
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(2*k))^2 * (1 - x^(5*k)) / (1 + x^(5*k))^2.
G.f.: 1 + Sum_{k>0} (-1)^k * k * x^k / (1 - x^k) * Kronecker(5, k).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = 2000^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A129303.
a(n) = (-1)^n * A113185(n).
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(12*sqrt(5)) = 0.367818... . - Amiram Eldar, Jan 28 2024
EXAMPLE
G.f. = 1 - q - 3*q^2 + 2*q^3 + q^4 - q^5 + 6*q^6 + 6*q^7 - 7*q^8 - 7*q^9 +...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, KroneckerSymbol[ 5, #] # (-1)^# &]]; (* Michael Somos, Aug 26 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ q] QPochhammer[ q^2]^2 QPochhammer[ q^5]^3 / QPochhammer[ q^10]^2, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
a[ n_] := SeriesCoefficient[ (5 EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^5]^3 - EllipticTheta[ 4, 0, q]^3 EllipticTheta[ 4, 0, q^5])/4, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker(5, d) * d * (-1)^d))};
(PARI) {a(n) = my(A, p, e, a1); if( n<1, n==0, A = factor(n); -prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==5, 1, p>2, p *= kronecker(5, p); (p^(e+1) - 1) / (p - 1), (5 + (-2)^(e+1)) / 3)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A)^2 * eta(x^5 + A)^3 / eta(x^10 + A)^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 08 2007, Mar 20 2008
STATUS
approved