The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129303 Expansion of eta(q^2)^3 * eta(q^5)^2 * eta(q^10) / eta(q)^2 in powers of q. 4
 1, 2, 2, 4, 5, 4, 6, 8, 7, 10, 12, 8, 12, 12, 10, 16, 16, 14, 20, 20, 12, 24, 22, 16, 25, 24, 20, 24, 30, 20, 32, 32, 24, 32, 30, 28, 36, 40, 24, 40, 42, 24, 42, 48, 35, 44, 46, 32, 43, 50, 32, 48, 52, 40, 60, 48, 40, 60, 60, 40, 62, 64, 42, 64, 60, 48, 66, 64 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). REFERENCES S. Cooper, On Ramanujan's function k(q)=r(q)r^2(q^2), Ramanujan J., 20 (2009), 311-328; see p. 318 Th. 4.1 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q * psi(q)^3 * psi(q^5) - q^2 * psi(q) * psi(q^5)^3 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Jul 12 2012 Euler transform of period 10 sequence [ 2, -1, 2, -1, 0, -1, 2, -1, 2, -4, ...]. a(n) is multiplicative with a(p^e) = p^e if p = 2 or 5, a(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 9 (mod 10), a(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 3, 7 (mod 10). G.f.: Sum_{k>0} Kronecker(20, k) * x^k / (1 - x^k)^2. G.f.: x * Product_{k>0} (1 - x^k) * (1 + x^(5*k)) * (1 + x^k)^3 * (1 - x^(5*k))^3. a(2*n) = a(n). a(2*n + 1) = A134080(n). EXAMPLE G.f. = q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 4*q^6 + 6*q^7 + 8*q^8 + 7*q^9 + ... MATHEMATICA a[ n_] := If[ n < 1, 0, DivisorSum[ n, n/# KroneckerSymbol[ 20, #] &]]; (* Michael Somos, Jul 12 2012 *) a[ n_] := SeriesCoefficient[ (1/16) (EllipticTheta[ 2, 0, q]^3 EllipticTheta[ 2, 0, q^5] - EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^5]^3), {q, 0, 2 n}]; (* Michael Somos, Jul 12 2012 *) nmax = 100; Rest[CoefficientList[Series[x * Product[(1 - x^k) * (1 + x^(5*k)) * (1 + x^k)^3 * (1 - x^(5*k))^3, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 08 2015 *) PROG (PARI) {a(n) = if( n<1, 0, sumdiv( n, d, n/d * kronecker( 20, d)))}; (PARI) {a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; f = kronecker( 20, p); (p^(e+1) - f^(e+1)) / (p - f) ))}; (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^5 + A)^2 * eta(x^10 + A) / eta(x + A)^2, n))}; CROSSREFS Cf. A134080. Sequence in context: A293974 A346036 A138557 * A255368 A186101 A284722 Adjacent sequences: A129300 A129301 A129302 * A129304 A129305 A129306 KEYWORD nonn,mult AUTHOR Michael Somos, Apr 08 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 18:13 EST 2022. Contains 358431 sequences. (Running on oeis4.)