OFFSET
1,5
COMMENTS
For the definition of Tesler matrices see A008608.
LINKS
Alois P. Heinz, Rows n = 1..17, flattened
FORMULA
Sum_{k=0..n*(n-1)/2} (n+k) * T(n,k) = A259787(n).
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 3, 2, 1;
1, 6, 11, 11, 7, 3, 1;
1, 10, 35, 65, 81, 71, 50, 27, 12, 4, 1;
1, 15, 85, 260, 526, 771, 878, 811, 627, 416, 238, 118, 50, 18, 5, 1;
...
MAPLE
b:= proc(n, i, l) option remember; (m-> `if`(m=0, 1, expand(
`if`(i=0, x^(l[1]+1)*b(l[1]+1, m-1, subsop(1=NULL, l)), add(
b(n-j, i-1, subsop(i=l[i]+j, l)), j=0..n)))))(nops(l))
end:
T:= n->(p->seq(coeff(p, x, i), i=n-1..degree(p)))(b(1, n-1, [0$(n-1)])):
seq(T(n), n=1..8);
MATHEMATICA
b[n_, i_, l_] := b[n, i, l] = Function[m, If[m == 0, 1, Expand[
If[i == 0, x^(l[[1]] + 1)*b[l[[1]] + 1, m - 1,
ReplacePart[l, 1 -> Nothing]], Sum[b[n - j, i - 1,
ReplacePart[l, i -> l[[i]] + j]], {j, 0, n}]]]]][Length[l]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, n - 1,
Exponent[p, x]}]][b[1, n - 1, Table[0, {n - 1}]]];
Table[T[n], {n, 1, 8}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jul 05 2015
STATUS
approved