login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008608 Number of n X n upper triangular matrices A of nonnegative integers such that a_1i + a_2i + ... + a_{i-1,i} - a_ii - a_{i,i+1} - ... - a_in = -1. 12
1, 2, 7, 40, 357, 4820, 96030, 2766572, 113300265, 6499477726, 515564231770, 55908184737696, 8203615387086224, 1613808957720017838, 422045413500096791377, 145606442599303799948900, 65801956684134601408784992, 38698135339344702725297294600, 29437141738828506134939056167071, 28800381656420765181010517468370560 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Garsia and Haglund call these Tesler matrices. - N. J. A. Sloane, Jul 04 2014

This is also the value of the type A_n Kostant partition function evaluated at (1,1,...,1,-n) in ZZ^(n+1). This is the number of ways of writing the vector (1,1,...,1,-n) in ZZ^(n+1) as a linear combination with nonnegative integer coefficients of the vectors e_i - e_j, for 1 <= i<j <= n+1. - Alejandro H. Morales, Mar 11 2014

LINKS

Jay Pantone, Table of n, a(n) for n = 1..23

D. Armstrong, A. Garsia, J. Haglund, B. Rhoades and B. Sagan, Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics, J. of Combin., 3(3):451-494, 2012.

W. Baldoni and M. Vergne, Kostant partitions functions and flow polytopes, Transform. Groups, 13(3-4):447-469, 2008.

J. Haglund, A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants.

J. Haglund and A. Garsia, A polynomial expression for the character of diagonal harmonics, 2013.

A. Garsia and J. Haglund, A polynomial expression for the character of diagonal harmonics, 2014.

Ricky I. Liu, K. Mészáros, and A. H. Morales, Flow polytopes and the space of diagonal harmonics, arXiv preprint arXiv:1610.08370 [math.CO], 2016.

K. Mészáros, A. H. Morales, and B. Rhoades, The polytope of Tesler matrices, arXiv preprint arXiv:1409.8566 [math.CO], 2014.

Jason O'Neill, On the poset and asymptotics of Tesler Matrices, arXiv:1702.00866 [math.CO], 2017.

Michèle Vergne et al., Maple programs for efficient computation of the Kostant partition function.

EXAMPLE

For n = 3 there are seven matrices: [[1,0,0],[0,1,0],[0,0,1]], [[1,0,0],[0,0,1],[0,0,2]], [[0,0,1],[0,1,0],[0,0,2]], [[0,0,1],[0,0,1],[0,0,3]], [[0,1,0],[0,2,0],[0,0,1]], [[0,1,0],[0,1,1],[0,0,2]], [[0,1,0],[0,0,2],[0,0,3]], so a(3) = 7. - Alejandro H. Morales, Jul 03 2015

MAPLE

multcoeff:=proc(n, f, coeffv, k)

local i, currcoeff;

currcoeff:=f;

for i from 1 to n do

currcoeff:=`if`(coeffv[i]=0, coeff(series(currcoeff, x[i], k), x[i], 0), coeff(series(currcoeff, x[i], k), x[i]^coeffv[i]));

end do;

return currcoeff;

end proc:

F:=n->mul(mul((1-x[i]*x[j]^(-1))^(-1), j=i+1..n), i=1..n):

a := n -> multcoeff(n+1, F(n+1), [seq(1, i=1..n), -n], n+2):

seq(a(i), i=2..7) # Alejandro H. Morales, Mar 11 2014, Jun 28 2015

# second Maple program:

b:= proc(n, i, l) option remember; (m-> `if`(m=0, 1,

`if`(i=0, b(l[1]+1, m-1, subsop(1=NULL, l)), add(

b(n-j, i-1, subsop(i=l[i]+j, l)), j=0..n))))(nops(l))

end:

a:= n-> b(1, n-1, [0$(n-1)]):

seq(a(n), n=1..14); # Alois P. Heinz, Jul 05 2015

MATHEMATICA

b[n_, i_, l_List] := b[n, i, l] = Function[{m}, If[m==0, 1, If[i==0, b[l[[1]]+1, m-1, ReplacePart[l, 1 -> Sequence[]]], Sum[b[n-j, i-1, ReplacePart[l, i -> l[[i]] + j]], {j, 0, n}]]]][Length[l]]; a[n_] := b[1, n-1, Array[0&, n-1]]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Jul 16 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A259485, A259666.

Row sums of A259786.

Main diagonal (shifted) of A259841.

Column k=1 of A259844.

Sequence in context: A224677 A064626 A137731 * A028441 A006455 A130715

Adjacent sequences: A008605 A008606 A008607 * A008609 A008610 A008611

KEYWORD

nonn

AUTHOR

Glenn P. Tesler (gptesler(AT)euclid.ucsd.edu)

EXTENSIONS

a(7)-a(13) from Alejandro H. Morales, Mar 12 2014

a(14) from Alejandro H. Morales, Jun 04 2015

a(15)-a(22) from Alois P. Heinz, Jul 05 2015

a(23) from Jay Pantone, Nov 19 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 02:53 EST 2022. Contains 358594 sequences. (Running on oeis4.)