login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259666
Number of n X n prime Tesler matrices.
2
1, 1, 3, 18, 181, 2788, 62590, 1989540, 87979661, 5349559222, 443306080232, 49679250634068, 7473835936432840, 1498682325685621140, 397803907069442925517, 138847938093177059278212, 63325340852730727078521540, 37513306417359729218973719474, 28701720575221087513434901774347
OFFSET
1,3
COMMENTS
Number of n X n upper triangular matrices A of nonnegative integers such that a_{1,i} + a_{2,i} + ... + a_{i-1,i} - a_{i,i} - a_{i,i+1} - ... - a_{i,n} = -1, whose simple graph G with vertices 1,2,3..,n and edges (i,j) if a_{i,j} > 0 is connected.
LINKS
FORMULA
E.g.f.: 1 + log( 1+ sum(n>=1, A008608(n) * x^n / n! ) ).
EXAMPLE
Example: For n =3 the a(3) = 3 matrices are [[0,1,0],[0,1,1],[0,0,2]], [[0,1,0],[0,0,2],[0,0,3]], [[0,0,1],[0,0,1],[0,0,3]].
E.g.f.: 1 + x+(1/2)*x^2+(3/6)*x^3+(18/24)*x^4+(181/120)*x^5+(2788/720)*x^6 + ...
MAPLE
multcoeff:=proc(n, f, coeffv, k)
local i, currcoeff;
currcoeff:=f;
for i from 1 to n do
currcoeff:=`if`(coeffv[i]=0, coeff(series(currcoeff, x[i], k), x[i], 0), coeff(series(currcoeff, x[i], k), x[i]^coeffv[i]));
end do;
return currcoeff;
end proc:
F:=n->mul(mul((1-x[i]*x[j]^(-1))^(-1), j=i+1..n), i=1..n):
b := n -> multcoeff(n+1, F(n+1), [seq(1, i=1..n), -n], n+2):
sa := 1 + log(1+ add(b(n)*x^n/n!, n=1..7)):
a := n -> n!*coeff(series(sa, x, n+1), x, n):
seq(a(i), i=1..6);
MATHEMATICA
b[n_, i_, l_] := b[n, i, l] = Function[{m}, If[m == 0, 1, If[i == 0, b[l[[1]] + 1, m - 1, ReplacePart[l, 1 -> Sequence[]]], Sum[b[n - j, i - 1, ReplacePart[l, i -> l[[i]] + j]], {j, 0, n}]]]][Length[l]];
c[n_] := b[1, n-1, Array[0&, n-1]];
a[n_] := a[n] = SeriesCoefficient[1 + Log[1 + Sum[c[k] x^k/k!, {k, 1, n}]], {x, 0, n}] n!;
Table[Print[n, " ", a[n]]; a[n], {n, 1, 19}] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz in A008608 *)
CROSSREFS
Sequence in context: A108994 A006472 A132853 * A323502 A365996 A326088
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(15)-a(19) from Alois P. Heinz, Jul 05 2015
STATUS
approved