login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259667 Catalan numbers mod 6. 5
1, 1, 2, 5, 2, 0, 0, 3, 2, 2, 2, 4, 4, 4, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 1, 0, 0, 0, 4, 4, 4, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 4, 0, 0, 0, 4, 4, 4, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2, 2, 0, 0, 0, 2, 2, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The only odd terms are those with indices n = 2^k-1 (k = 0, 1, 2, 3, ...), cf. A038003.

It is conjectured that the only k which yield a(2^k-1) = 1 are k = 0, 1 and 5. Are there other k than 2 and 8 that yield  a(2^k-1) = 5 ? Otherwise said, is a(2^k-1) = 3 for all k > 8 ?

LINKS

Table of n, a(n) for n=0..119.

M. Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems, sect. III: Binomial coefficients modulo integers, binomod.gp (v.1.4, 11/2015).

V. Reshetnikov, A000108(n) ≡ 1 (mod 6), SeqFan list, Nov. 8, 2015.

FORMULA

a(n) = A000108(n) mod 6.

PROG

(PARI) a(n)=binomial(2*n, n)/(n+1)%6

(PARI) A259667(n)=lift(if(n%3!=1, binomod(2*n+1, n, 6)/(2*n+1), if(bittest(n, 0), binomod(2*n, n-1, 6)/n, binomod(2*n, n, 6)/(n+1)))) \\ using binomod.gp by M. Alekseyev, cf. Links.

CROSSREFS

Sequence in context: A222637 A190950 A159985 * A193083 A146103 A245172

Adjacent sequences:  A259664 A259665 A259666 * A259668 A259669 A259670

KEYWORD

nonn

AUTHOR

M. F. Hasler, Nov 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 06:05 EST 2017. Contains 295937 sequences.