The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028441 Triangulations of 4-dimensional cyclic polytopes. 2
1, 2, 7, 40, 357, 4824, 96426, 2800212, 116447760 (list; graph; refs; listen; history; text; internal format)



Table of n, a(n) for n=5..13.

C. A. Athanasiadis, J. A. De Loera, V. Reiner and F. Santos, Fiber polytopes for the projections between cyclic polytopes, European Journal of Combinatorics, Volume: 21, Issue: 1, 2000, pp. 19 - 47.

M. Azaola and F. Santos, The number of triangulations of the cyclic polytope C(n,n-4), Discrete Comput. Geom., 27 (2002), 29-48.

Michael Joswig and Lars Kastner, New counts for the number of triangulations of cyclic polytopes, arXiv:1804.08029 [math.CO], 2018.

J. Rambau, TOPCOM

J. Rambau and V. Reiner, A survey of the higher Stasheff-Tamari orders, in Progress in Mathematics, Vol. 299, Birkhauser 2012.

J. Rambau and F. Santos, The Baues problem for cyclic polytopes I, In "Special issue on Combinatorics of convex polytopes" (K. Fukuda and G. M. Ziegler, eds.), European J. Combin. 21:1 (2000), 65-83.


Cf. A066342, A066344.

Sequence in context: A064626 A137731 A008608 * A006455 A130715 A317723

Adjacent sequences:  A028438 A028439 A028440 * A028442 A028443 A028444




Jesús A. De Loera (deloera(AT)geom.umn.edu)


a(12) computed by J. Rambau.

a(13) computed by J. Rambau; added by Joel B. Lewis, Feb 05 2013



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 04:47 EDT 2022. Contains 356204 sequences. (Running on oeis4.)