login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137731
Repeated set splitting, labeled elements.
4
1, 1, 2, 7, 40, 355, 4720, 91690, 2559980, 101724390, 5724370860, 455400049575, 51225573119870, 8155535394029685, 1840116104410154380, 589128078915179209630, 267942956094193363173030, 173296035183231212307098790, 159532934947213401229226873410
OFFSET
1,3
COMMENTS
Consider a set of n labeled elements. Form all splittings into two subsets. Consider the resulting sets and perform the splittings on all their subsets and so on. a(n+1) = number of splittings of the n-set {1,2,3,...,n}.
E.g., a(4) = 7 because we have {abc}, {ab}{c}, {ac}{b}, {bc}{a}, {{a}{b}}{c}, {{a}{c}}{b}, {{b}{c}}{a}. The case for unlabeled elements is described by A137732. This structure is related to the Double Factorials A000142 for which the recurrence is a(n) = Sum_{k=1..n-1} C(n-1,k)*a(k)*a(n-k) with a(1)=1, a(2)=1.
See also A137591 = Number of parenthesizings of products formed by n factors assuming noncommutativity and nonassociativity. See also the Catalan numbers A000108.
LINKS
FORMULA
a(n) = Sum_{k=1..n-1} S2(n-1,k)*a(k)*a(n-k) with a(1)=1, where S2(n,k) denotes the Stirling numbers of the second kind.
EXAMPLE
{a}.
{ab}, {a}{b}.
{abc}, {ab}{c}, {ac}{b}, {bc}{a}, {{a}{b}}{c}, {{a}{c}}{b}, {{b}{c}}{a}.
{abcd}, {abc}{d}, {abd}{c}, {acd}{b}, {bcd}{a},
{{ab}{c}}{d}, {{ab}{d}}{c}, {{ac}{d}}{b}, {{bc}{d}}{a},
{{ac}{b}}{d}, {{ad}{b}}{c}, {{ad}{c}}{b}, {{bd}{c}}{a},
{{bc}{a}}{d}, {{bd}{a}}{c}, {{cd}{a}}{b}, {{cd}{b}}{a},
{{{a}{b}}{c}}{d}, {{{a}{b}}{d}}{c}, {{{a}{c}}{d}}{b}, {{{b}{c}}{d}}{a},
{{{a}{c}}{b}}{d}, {{{a}{d}}{b}}{c}, {{{a}{d}}{c}}{b}, {{{b}{d}}{c}}{a},
{{{b}{c}}{a}}{d}, {{{b}{d}}{a}}{c}, {{{c}{d}}{a}}{b}, {{{c}{d}}{b}}{a},
{{ab}{cd}}, {{ac}{bd}}, {{ad}{bc}},
{{{a}{b}}{cd}}, {{{a}{c}}{bd}}, {{{a}{d}}{bc}},
{{ab}{{c}{d}}}, {{ac}{{b}{d}}}, {{ad}{{b}{c}}},
{{{a}{b}}{{c}{d}}}, {{{a}{c}}{{b}{d}}}, {{{a}{d}}{{b}{c}}}.
MAPLE
A137731 := proc(n) option remember ; local k ; if n = 1 then 1; else add(combinat[stirling2](n-1, k)*procname(k)*procname(n-k), k=1..n-1) ; fi; end: for n from 1 to 20 do printf("%d, ", A137731(n)) ; od: # R. J. Mathar, Aug 25 2008
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Sum[StirlingS2[n-1, k]*a[k]*a[n-k], {k, 1, n-1}]; Array[a, 20] (* Jean-François Alcover, May 18 2018 *)
PROG
(Python)
from functools import cache
from sympy.functions.combinatorial.numbers import stirling as S2
@cache
def a(n): return sum(S2(n-1, k)*a(k)*a(n-k) for k in range(1, n)) if n > 1 else 1
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, May 05 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Wieder, Feb 09 2008
EXTENSIONS
Extended by R. J. Mathar, Aug 25 2008
STATUS
approved