OFFSET
0,8
COMMENTS
Inverse binomial transform (by columns) of A090888.
FORMULA
T(n,k) = 2^n*Fibonacci(k) - Fibonacci(k-2).
T(n,k) = (2^n-2)*Fibonacci(k) + Fibonacci(k+1).
T(n,0) = 1; T(n,1) = 2^n - 1; T(n,k) = T(n,k-1) + T(n,k-2), for k > 1.
T(0,k) = Fibonacci(k-1); T(1,k) = Fibonacci(k+1); T(n,k) = 3T(n-1,k) - 2T(n-2,k), for n > 1.
T(n,k) = 2T(n-1,k) + Fibonacci(k-2), for n > 0.
O.g.f. (by rows) = (1+(-2+2^n)x)/(1-x-x^2).
Sum_{k=0..n} T(n-k,k) = A119587(n+1). - Ross La Haye, May 31 2006
EXAMPLE
T(2,3) = 7 because 2^2(Fibonacci(3)) - Fibonacci(3-2) = 4*2 - 1 = 7.
{1};
{1, 0};
{1, 1, 1};
{1, 3, 2, 1};
{1, 7, 4, 3, 2};
{1, 15, 8, 7, 5, 3};
{1, 31, 16, 15, 11, 8, 5};
{1, 63, 32, 31, 23, 18, 13, 8};
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ross La Haye, May 17 2006
STATUS
approved