login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055010 a(0) = 0; for n > 0, a(n) = 3*2^(n-1) - 1. 39
0, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943, 12884901887 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Apart from leading term (which should really be 3/2), same as A083329.

Written in binary, a(n) is 1011111...1.

The sequence 2, 5, 11, 23, 47, 95, ... apparently gives values of n such that Nim-factorial(n) = 2. Cf. A059970. However, compare A060152. More work is needed! - John W. Layman, Mar 09 2001

With offset 1, number of (132,3412)-avoiding two-stack sortable permutations.

Number of descents after n+1 iterations of morphism A007413.

a(n) = A164874(n,1), n>0; subsequence of A030130. - Reinhard Zumkeller, Aug 29 2009

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,-1). - Milan Janjic, Jan 24 2010

a(n+1) = A196168(A000079(n)). - Reinhard Zumkeller, Oct 28 2011

a(n) is the total number of records over all length n binary words. A record in a word a_1,a_2,...,a_n is a letter a_j that is larger than all the preceding letters. That is, a_j>a_i for all i<j. - Geoffrey Critzer, Jul 18 2020

Called Thabit numbers after the Syrian mathematician Thābit ibn Qurra (826 or 836 - 901). - Amiram Eldar, Jun 08 2021

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Eric S. Egge and Toufik Mansour, 132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers, arXiv:math/0205206 [math.CO], 2002.

S. Kitaev and T. Mansour, Counting the occurrences of generalized patterns in words generated by a morphism, arXiv:math/0210170 [math.CO], 2002.

Eric Weisstein's World of Mathematics, Thabit ibn Kurrah Number.

Wikipedia, Thabit number.

Index entries for linear recurrences with constant coefficients, signature (3,-2).

FORMULA

a(n) = A118654(n-1, 4), for n > 0.

a(n) = 2*a(n-1) + 1 = a(n-1) + A007283(n-1) = A007283(n)-1 = A000079(n) + A000225(n + 1) = A000079(n + 1) + A000225(n) = 3*A000079(n) - 1 = 3*A000225(n) + 2.

a(n) = A010036(n)/2^(n-1). - Philippe Deléham, Feb 20 2004

a(n) = A099258(A033484(n)-1) = floor(A033484(n)/2). - Reinhard Zumkeller, Oct 09 2004

a(n) = (-1 + 3*2^(n-1))*(1-(C(2*n,n) mod 2)), with n>=0. - Paolo P. Lava, Nov 20 2008

G.f.: x*(2-x)/((1-x)*(1-2*x)). - Philippe Deléham, Oct 04 2011

EXAMPLE

a(3) = 3*2^2 - 1 = 3*4 - 1 = 11.

MATHEMATICA

Join[{0}, 3*2^Range[0, 34]-1] (* Harvey P. Dale, May 05 2013 *)

PROG

(Magma) [Floor(3*2^(n-1) - 1): n in [0..35]]; // Vincenzo Librandi, May 18 2011

(PARI) a(n)=3*2^n\2 - 1 \\ Charles R Greathouse IV, Apr 08 2016

(Sage) [0]+[3*2^(n-1)-1 for n in (1..35)] # G. C. Greubel, May 06 2019

(GAP) Concatenation([0], List([1..35], n-> 3*2^(n-1)-1)) # G. C. Greubel, May 06 2019

CROSSREFS

Cf. A007505 for primes in this sequence. Apart from initial term, same as A052940 and A083329.

Cf. A266550 (independence number of the n-Mycielski graph).

Sequence in context: A086219 A153893 A083329 * A266550 A081973 A357292

Adjacent sequences: A055007 A055008 A055009 * A055011 A055012 A055013

KEYWORD

easy,nonn

AUTHOR

Henry Bottomley, May 31 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 18:07 EST 2022. Contains 358510 sequences. (Running on oeis4.)