login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055010
a(0) = 0; for n > 0, a(n) = 3*2^(n-1) - 1.
42
0, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943, 12884901887
OFFSET
0,2
COMMENTS
Apart from leading term (which should really be 3/2), same as A083329.
Written in binary, a(n) is 1011111...1.
The sequence 2, 5, 11, 23, 47, 95, ... apparently gives values of n such that Nim-factorial(n) = 2. Cf. A059970. However, compare A060152. More work is needed! - John W. Layman, Mar 09 2001
With offset 1, number of (132,3412)-avoiding two-stack sortable permutations.
Number of descents after n+1 iterations of morphism A007413.
a(n) = A164874(n,1), n>0; subsequence of A030130. - Reinhard Zumkeller, Aug 29 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,-1). - Milan Janjic, Jan 24 2010
a(n) is the total number of records over all length n binary words. A record in a word a_1,a_2,...,a_n is a letter a_j that is larger than all the preceding letters. That is, a_j>a_i for all i<j. - Geoffrey Critzer, Jul 18 2020
Called Thabit numbers after the Syrian mathematician Thābit ibn Qurra (826 or 836 - 901). - Amiram Eldar, Jun 08 2021
LINKS
Eric S. Egge and Toufik Mansour, 132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers, arXiv:math/0205206 [math.CO], 2002.
S. Kitaev and T. Mansour, Counting the occurrences of generalized patterns in words generated by a morphism, arXiv:math/0210170 [math.CO], 2002.
Eric Weisstein's World of Mathematics, Thabit ibn Kurrah Number.
Wikipedia, Thabit number.
FORMULA
a(n) = A118654(n-1, 4), for n > 0.
a(n) = 2*a(n-1) + 1 = a(n-1) + A007283(n-1) = A007283(n)-1 = A000079(n) + A000225(n + 1) = A000079(n + 1) + A000225(n) = 3*A000079(n) - 1 = 3*A000225(n) + 2.
a(n) = A010036(n)/2^(n-1). - Philippe Deléham, Feb 20 2004
a(n) = A099258(A033484(n)-1) = floor(A033484(n)/2). - Reinhard Zumkeller, Oct 09 2004
G.f.: x*(2-x)/((1-x)*(1-2*x)). - Philippe Deléham, Oct 04 2011
a(n+1) = A196168(A000079(n)). - Reinhard Zumkeller, Oct 28 2011
E.g.f.: (3*exp(2*x) - 2*exp(x) - 1)/2. - Stefano Spezia, Sep 14 2024
EXAMPLE
a(3) = 3*2^2 - 1 = 3*4 - 1 = 11.
MATHEMATICA
Join[{0}, 3*2^Range[0, 34]-1] (* Harvey P. Dale, May 05 2013 *)
PROG
(Magma) [Floor(3*2^(n-1) - 1): n in [0..35]]; // Vincenzo Librandi, May 18 2011
(PARI) a(n)=3*2^n\2 - 1 \\ Charles R Greathouse IV, Apr 08 2016
(Sage) [0]+[3*2^(n-1)-1 for n in (1..35)] # G. C. Greubel, May 06 2019
(GAP) Concatenation([0], List([1..35], n-> 3*2^(n-1)-1)) # G. C. Greubel, May 06 2019
CROSSREFS
Cf. A007505 for primes in this sequence. Apart from initial term, same as A052940 and A083329.
Cf. A266550 (independence number of the n-Mycielski graph).
Sequence in context: A086219 A153893 A083329 * A266550 A081973 A357292
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, May 31 2000
STATUS
approved