The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055010 a(0) = 0; for n > 0, a(n) = 3*2^(n-1) - 1. 39
 0, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943, 12884901887 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Apart from leading term (which should really be 3/2), same as A083329. Written in binary, a(n) is 1011111...1. The sequence 2, 5, 11, 23, 47, 95, ... apparently gives values of n such that Nim-factorial(n) = 2. Cf. A059970. However, compare A060152. More work is needed! - John W. Layman, Mar 09 2001 With offset 1, number of (132,3412)-avoiding two-stack sortable permutations. Number of descents after n+1 iterations of morphism A007413. a(n) = A164874(n,1), n>0; subsequence of A030130. - Reinhard Zumkeller, Aug 29 2009 Let A be the Hessenberg matrix of order n, defined by: A[1,j]=[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,-1). - Milan Janjic, Jan 24 2010 a(n+1) = A196168(A000079(n)). - Reinhard Zumkeller, Oct 28 2011 a(n) is the total number of records over all length n binary words. A record in a word a_1,a_2,...,a_n is a letter a_j that is larger than all the preceding letters.  That is, a_j>a_i for all i 0. a(n) = 2*a(n-1) + 1 = a(n-1) + A007283(n-1) = A007283(n)-1 = A000079(n) + A000225(n + 1) = A000079(n + 1) + A000225(n) = 3*A000079(n) - 1 = 3*A000225(n) + 2. a(n) = A010036(n)/2^(n-1). - Philippe Deléham, Feb 20 2004 a(n) = A099258(A033484(n)-1) = floor(A033484(n)/2). - Reinhard Zumkeller, Oct 09 2004 a(n) = (-1 + 3*2^(n-1))*(1-(C(2*n,n) mod 2)), with n>=0. - Paolo P. Lava, Nov 20 2008 G.f.: x*(2-x)/((1-x)*(1-2*x)). - Philippe Deléham, Oct 04 2011 EXAMPLE a(3) = 3*2^2 - 1 = 3*4 - 1 = 11. MATHEMATICA Join[{0}, 3*2^Range[0, 34]-1] (* Harvey P. Dale, May 05 2013 *) PROG (MAGMA) [Floor(3*2^(n-1) - 1): n in [0..35]]; // Vincenzo Librandi, May 18 2011 (PARI) a(n)=3*2^n\2 - 1 \\ Charles R Greathouse IV, Apr 08 2016 (Sage) +[3*2^(n-1)-1 for n in (1..35)] # G. C. Greubel, May 06 2019 (GAP) Concatenation(, List([1..35], n-> 3*2^(n-1)-1)) # G. C. Greubel, May 06 2019 CROSSREFS Cf. A007505 for primes in this sequence. Apart from initial term, same as A052940 and A083329. Cf. A266550 (independence number of the n-Mycielski graph). Sequence in context: A086219 A153893 A083329 * A266550 A081973 A334276 Adjacent sequences:  A055007 A055008 A055009 * A055011 A055012 A055013 KEYWORD easy,nonn AUTHOR Henry Bottomley, May 31 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 25 04:05 EDT 2020. Contains 338011 sequences. (Running on oeis4.)