OFFSET
0,2
COMMENTS
Number of nodes in rooted tree of height n in which every node (including the root) has valency 3.
Pascal diamond numbers: reflect Pascal's n-th triangle vertically and sum all elements. E.g., a(3)=1+(1+1)+(1+2+1)+(1+1)+1. - Paul Barry, Jun 23 2003
Number of 2 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1), (10;0) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2 and j1 < j2 and these elements are in the same relative order as those in the triple (x,y,z). - Sergey Kitaev, Nov 11 2004
Binomial and inverse binomial transform are in A001047 (shifted) and A122553. - R. J. Mathar, Sep 02 2008
a(n) = (Sum_{k=0..n-1} a(n)) + (2*n + 1); e.g., a(3) = 22 = (1 + 4 + 10) + 7. - Gary W. Adamson, Jan 21 2009
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is a proper subset of y or y is a proper subset of x and x and y are disjoint, or 1) x equals y. Then a(n) = |R|. - Ross La Haye, Mar 19 2009
Equals the Jacobsthal sequence A001045 convolved with (1, 3, 4, 4, 4, 4, 4, ...). - Gary W. Adamson, May 24 2009
Equals the eigensequence of a triangle with the odd integers as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 58, 154, 178 and 184, lead to this sequence. For the corner squares these vectors lead to the companion sequence A097813. - Johannes W. Meijer, Aug 15 2010
a(n+2) is the integer with bit string "10" * "1"^n * "10".
a(n) = A027383(2n). - Jason Kimberley, Nov 03 2011
a(n) is the sum of the entries in the n-th and (n+1)-st rows of Pascal's triangle minus 2. - Stuart E Anderson, Aug 27 2017
Also the number of independent vertex sets and vertex covers in the complete tripartite graph K_{n,n,n}. - Eric W. Weisstein, Sep 21 2017
Apparently, a(n) is the least k such that the binary expansion of A000045(k) ends with exactly n+1 ones. - Rémy Sigrist, Sep 25 2021
REFERENCES
J. Riordan, Series-parallel realization of the sum modulo 2 of n switching variables, in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 877-878.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Dennis E. Davenport, Shakuan K. Frankson, Louis W. Shapiro, and Leon C. Woodson, An Invitation to the Riordan Group, Enum. Comb. Appl. (2024) Vol. 4, No. 3, Art. #S2S1. See p. 22.
Erik D. Demaine et al., Picture-Hanging Puzzles, arXiv:1203.3602 [cs.DS], 2012, 2014. See p. 8, actually length(Sn) is 2^n+2^(n-1)-2, that is, a(n-1).
Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
Eric Weisstein's World of Mathematics, Complete Tripartite Graph
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Vertex Cover
Index entries for linear recurrences with constant coefficients, signature (3,-2).
FORMULA
G.f.: (1+x)/(1-3*x+2*x^2).
a(n) = 2*(a(n-1) + 1) for n>0, with a(0)=1.
a(n) = A007283(n) - 2.
G.f. is equivalent to (1-2*x-3*x^2)/((1-x)*(1-2*x)*(1-3*x)). - Paul Barry, Apr 28 2004
From Reinhard Zumkeller, Oct 09 2004: (Start)
Row sums of triangle A130452. - Gary W. Adamson, May 26 2007
Row sums of triangle A131110. - Gary W. Adamson, Jun 15 2007
Binomial transform of (1, 3, 3, 3, ...). - Gary W. Adamson, Oct 17 2007
Row sums of triangle A051597 (a triangle generated from Pascal's rule given right and left borders = 1, 2, 3, ...). - Gary W. Adamson, Nov 04 2007
Equals A132776 * [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, Nov 16 2007
a(n) = Sum_{k=0..n} A112468(n,k)*3^k. - Philippe Deléham, Feb 23 2014
a(n) = -(2^n) * A036563(1-n) for all n in Z. - Michael Somos, Jul 04 2017
E.g.f.: 3*exp(2*x) - 2*exp(x). - G. C. Greubel, Nov 18 2019
EXAMPLE
Binary: 1, 100, 1010, 10110, 101110, 1011110, 10111110, 101111110, 1011111110, 10111111110, 101111111110, 1011111111110, 10111111111110,
G.f. = 1 + 4*x + 10*x^2 + 22*x^3 + 46*x^4 + 94*x^5 + 190*x^6 + 382*x^7 + ...
MAPLE
with(combinat):a:=n->stirling2(n, 2)+stirling2(n+1, 2): seq(a(n), n=1..35); # Zerinvary Lajos, Oct 07 2007
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=(a[n-1]+1)*2 od: seq(a[n], n=1..35); # Zerinvary Lajos, Feb 22 2008
MATHEMATICA
Table[3 2^n - 2, {n, 0, 35}] (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
(* Start from Eric W. Weisstein, Sep 21 2017 *)
3*2^Range[0, 35] - 2
LinearRecurrence[{3, -2}, {1, 4}, 36]
CoefficientList[Series[(1+x)/(1-3x+2x^2), {x, 0, 35}], x] (* End *)
PROG
(Magma)[3*2^n-2: n in [1..36]] // Vincenzo Librandi, Nov 22 2010
(PARI) a(n) = 3<<n-2; \\ Charles R Greathouse IV, Nov 02 2011
(Haskell)
a033484 = (subtract 2) . (* 3) . (2 ^)
a033484_list = iterate ((subtract 2) . (* 2) . (+ 2)) 1
-- Reinhard Zumkeller, Apr 23 2013
(Sage) [3*2^n -2 for n in (0..35)] # G. C. Greubel, Nov 18 2019
(GAP) List([0..35], n-> 3*2^n -2); # G. C. Greubel, Nov 18 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved