The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051597 Rows of triangle formed using Pascal's rule except begin and end n-th row with n+1. 15
 1, 2, 2, 3, 4, 3, 4, 7, 7, 4, 5, 11, 14, 11, 5, 6, 16, 25, 25, 16, 6, 7, 22, 41, 50, 41, 22, 7, 8, 29, 63, 91, 91, 63, 29, 8, 9, 37, 92, 154, 182, 154, 92, 37, 9, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 11, 56, 175, 375, 582, 672, 582, 375, 175, 56, 11 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums give A033484(n). The number of spotlight tilings of an (m+1) X (n+1) rectangle, read by antidiagonals. - Bridget Tenner, Nov 09 2007 T(n,k) = A134636(n,k) - A051601(n,k). - Reinhard Zumkeller, Nov 23 2012 T(n,k) = A209561(n+2,k+1), 0 <= k <= n. - Reinhard Zumkeller, Dec 26 2012 For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 19 2013 For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013 LINKS Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened B. E. Tenner, Spotlight tiling, Ann. Combin. 14 (4) (2010) 553. Index entries for triangles and arrays related to Pascal's triangle FORMULA T(2n,n) = A051924(n+1). - Philippe Deléham, Nov 26 2006 T(m,n) = binomial(m+n,m) - binomial(m+n-2,m-1) (correct up to offset and transformation of square indices to triangular indices). - Bridget Tenner, Nov 09 2007 T(0,n) = T(n,0) = n+1, T(n,k) = T(n-1,k) + T(n-1,k-1), 0 < k < n. From Peter Bala, Feb 28 2013: (Start) T(n,k) = binomial(n,k-1) + binomial(n,k) + binomial(n,k+1) for 0 <= k <= n. O.g.f.: (1 - xt^2)/((1 - t)(1 - xt)(1 - (1+x)t)) = 1 + (2 + 2x)t + (3 + 4x + 3x^2)t^2 + .... Row polynomials: ((1+x+x^2)*(1+x)^n - 1 - x^(n+2))/x. (End) EXAMPLE Triangle begins as: 1; 2, 2; 3, 4, 3; 4, 7, 7, 4; 5, 11, 14, 11, 5; MAPLE T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(k=0 or k=n, n+1, T(n-1, k-1) + T(n-1, k) )) end: seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, May 27 2013 MATHEMATICA NestList[Append[ Prepend[Map[Apply[Plus, #] &, Partition[#, 2, 1]], #[[1]] + 1], #[[1]] + 1] &, {1}, 10] // Grid (* Geoffrey Critzer, May 26 2013 *) T[n_, k_] := T[n, k] = If[k<0 || k>n, 0, If[k==0 || k==n, n+1, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *) PROG (Haskell) a051597 n k = a051597_tabl !! n !! k a051597_row n = a051597_tabl !! n a051597_tabl = iterate (\row -> zipWith (+) ([1] ++ row) (row ++ [1])) [1] -- Reinhard Zumkeller, Nov 23 2012 (PARI) T(n, k) = if(k<0 || k>n, 0, if(k==0 || k==n, n+1, T(n-1, k-1) + T(n-1, k) )); for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Nov 18 2019 (Magma) function T(n, k) if k lt 0 or k gt n then return 0; elif k eq 0 or k eq n then return n+1; else return T(n-1, k-1) + T(n-1, k); end if; return T; end function; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 18 2019 (Sage) @CachedFunction def T(n, k): if (k<0 or k>n): return 0 elif (k==0 or k==n): return n+1 else: return T(n-1, k-1) + T(n-1, k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 18 2019 (GAP) T:= function(n, k) if k<0 or k>n then return 0; elif k=0 or k=n then return n+1; else return T(n-1, k-1) + T(n-1, k); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 18 2019 CROSSREFS Stripped variant of A072405, A122218. Cf. A007318, A228196, A228576. Sequence in context: A241356 A065157 A235804 * A084193 A049787 A084192 Adjacent sequences: A051594 A051595 A051596 * A051598 A051599 A051600 KEYWORD easy,nonn,tabl AUTHOR Asher Auel STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 15:36 EST 2023. Contains 367693 sequences. (Running on oeis4.)