The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072405 Triangle T(n, k) = C(n,k) - C(n-2,k-1) for n >= 3 and T(n, k) = 1 otherwise, read by rows. 16
 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 1, 1, 4, 7, 7, 4, 1, 1, 5, 11, 14, 11, 5, 1, 1, 6, 16, 25, 25, 16, 6, 1, 1, 7, 22, 41, 50, 41, 22, 7, 1, 1, 8, 29, 63, 91, 91, 63, 29, 8, 1, 1, 9, 37, 92, 154, 182, 154, 92, 37, 9, 1, 1, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 1, 1, 11, 56, 175, 375, 582, 672, 582, 375, 175, 56, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Starting 1,0,1,1,1,... this is the Riordan array ((1-x+x^2)/(1-x), x/(1-x)). Its diagonal sums are A006355. Its inverse is A106509. - Paul Barry, May 04 2005 LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA T(n, k) = C(n,k) - C(n-2,k-1) for n >= 3 and T(n, k) = 1 otherwise. T(n, k) = T(n-1, k-1) + T(n-1, k) starting with T(2, 0) = T(2, 1) = T(2, 2) = 1 and T(n, 0) = T(n, n) = 1. G.f.: (1-x^2*y) / (1 - x*(1+y)). - Ralf Stephan, Jan 31 2005 From G. C. Greubel, Apr 28 2021: (Start) Sum_{k=0..n} T(n, k) = (n+1)*[n<3] + 3*2^(n-2)*[n>=3]. T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = -1. (End) EXAMPLE Rows start as:   1;   1, 1;   1, 1,  1; (key row for starting the recurrence)   1, 2,  2,  1;   1, 3,  4,  3,  1;   1, 4,  7,  7,  4, 1;   1, 5, 11, 14, 11, 5, 1; MATHEMATICA t[2, 1] = 1; t[n_, n_] = t[_, 0] = 1; t[n_, k_] := t[n, k] = t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2013, after Ralf Stephan *) PROG (Magma) T:= func< n, k | n lt 3 select 1 else Binomial(n, k) - Binomial(n-2, k-1) >; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 28 2021 (Sage) def T(n, k): return 1 if n<3 else binomial(n, k) - binomial(n-2, k-1) flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021 CROSSREFS Row sums give essentially A003945, A007283, or A042950. Cf. A072406 for number of odd terms in each row. Cf. A051597, A096646, A122218. Cf. A007318 (q=0), A072405 (q= -1), A173117 (q=1), A173118 (q=2), A173119 (q=3), A173120 (q=-4). Sequence in context: A086461 A047089 A122218 * A146565 A115594 A086623 Adjacent sequences:  A072402 A072403 A072404 * A072406 A072407 A072408 KEYWORD easy,nonn,tabl AUTHOR Henry Bottomley, Jun 16 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 05:52 EDT 2021. Contains 345080 sequences. (Running on oeis4.)