This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078424 Mix digits of Pi, e and phi. 0
 3, 2, 1, 1, 7, 6, 4, 1, 1, 1, 8, 8, 5, 2, 0, 9, 8, 3, 2, 1, 3, 6, 8, 9, 5, 2, 8, 3, 8, 8, 5, 4, 7, 8, 5, 4, 9, 9, 9, 7, 0, 8, 9, 4, 9, 3, 5, 4, 2, 2, 8, 3, 3, 4, 8, 5, 8, 4, 3, 2, 6, 6, 0, 2, 0, 4, 6, 2, 5, 4, 8, 8, 3, 7, 6, 3, 4, 8, 8, 7, 3, 3, 1, 4, 2, 3, 3, 7, 5, 6, 9, 2, 5, 5, 6, 6, 0, 6, 3, 2, 2, 8, 8, 4, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS MATHEMATICA p = RealDigits[Pi, 10, 40][[1]]; e = RealDigits[E, 10, 40][[1]]; g = RealDigits[GoldenRatio, 10, 40][[1]]; a = {}; Do[a = Append[a, p[[n]]]; a = Append[a, e[[n]]]; a = Append[a, g[[n]]], {n, 1, 40}]; a Riffle[Riffle[RealDigits[Pi, 10, 100][[1]], RealDigits[E, 10, 100][[1]]], RealDigits[GoldenRatio, 10, 100][[1]], 3] (* Harvey P. Dale, Jun 20 2011 *) PROG (PARI) \ piephi alternating between Pi, e and Phi digit sequence \ piephi.gp Pi, e and phi digits merged piephi(n) = { default(realprecision, 1000); p = Pi/10; e = exp(1)/10; phe = (sqrt(5)+1)/20; default(realprecision, 28); forstep(x=1, n, 2, d = p*10; d1=floor(d); p = frac(d); d2 = e*10; d3 = floor(d2); e = frac(d2); d4 = phe*10; d5 = floor(d4); phe = frac(d4); print1(d1" "d3" "d5" "); ); CROSSREFS { A000796(n), A001113(n), A001622(n), ..., n=1, 2, ... } Cf. A000796, A001113, A001622, A001355, A076790. Sequence in context: A073201 A118654 A111760 * A291117 A293181 A229345 Adjacent sequences:  A078421 A078422 A078423 * A078425 A078426 A078427 KEYWORD base,easy,nonn AUTHOR Cino Hilliard, Dec 29 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 16:50 EDT 2019. Contains 328302 sequences. (Running on oeis4.)