|
|
A259787
|
|
Total element sum of all n X n Tesler matrices of nonnegative integers.
|
|
3
|
|
|
1, 5, 31, 270, 3370, 60146, 1522031, 54055976, 2666453502, 180847717069, 16704822358932, 2082808024263350, 347639192485104658, 77076883307827211845, 22537752778732740525833, 8633258320969387044105210, 4305220991520242104331411368, 2778601200692503839128415662124
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For the definition of Tesler matrices see A008608.
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 1..21
|
|
FORMULA
|
a(n) = Sum_{k=0..n*(n-1)/2} (n+k) * A259786(n,k).
a(n) = Sum_{k=0..n} k * A259841(n,k).
|
|
EXAMPLE
|
There are two 2 X 2 Tesler matrices: [1,0; 0,1], [0,1; 0,2], the total sum of all elements gives a(2) = 5.
|
|
MAPLE
|
b:= proc(n, i, l) option remember; (m-> `if`(m=0, [1, 0], `if`(i=0,
(p-> p+[0, p[1]*(l[1]+1)])(b(l[1]+1, m-1, subsop(1=NULL, l))),
add(b(n-j, i-1, subsop(i=l[i]+j, l)), j=0..n))))(nops(l))
end:
a:= n-> (p-> p[1]+p[2])(b(1, n-1, [0$(n-1)])):
seq(a(n), n=1..14);
|
|
CROSSREFS
|
Cf. A008608, A259786, A259841.
Sequence in context: A294216 A058892 A177453 * A273601 A218679 A296967
Adjacent sequences: A259784 A259785 A259786 * A259788 A259789 A259790
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Jul 05 2015
|
|
STATUS
|
approved
|
|
|
|