login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218679 O.g.f.: Sum_{n>=0} n^n * (1+n*x)^(4*n) * x^n/n! * exp(-n*x*(1+n*x)^4). 3
1, 1, 5, 31, 273, 2652, 30071, 375628, 5135649, 75945388, 1202006514, 20243446719, 360517872287, 6758311053521, 132833835618576, 2728019848249377, 58370987166092073, 1297916560174624569, 29924140267551540116, 713934350929955200551, 17594768127940813003452 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare o.g.f. to the curious identity:

1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).

LINKS

Table of n, a(n) for n=0..20.

EXAMPLE

O.g.f.: A(x) = 1 + x + 5*x^2 + 31*x^3 + 273*x^4 + 2652*x^5 + 30071*x^6 +...

where

A(x) = 1 + (1+x)^4*x*exp(-x*(1+x)^4) + 2^2*(1+2*x)^8*x^2/2!*exp(-2*x*(1+2*x)^4) + 3^3*(1+3*x)^12*x^3/3!*exp(-3*x*(1+3*x)^4) + 4^4*(1+4*x)^16*x^4/4!*exp(-4*x*(1+4*x)^4) + 5^5*(1+5*x)^20*x^5/5!*exp(-5*x*(1+5*x)^4) +...

simplifies to a power series in x with integer coefficients.

PROG

(PARI) {a(n)=local(A=1+x); A=sum(k=0, n, k^k*(1+k*x)^(4*k)*x^k/k!*exp(-k*x*(1+k*x)^4+x*O(x^n))); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A218670, A218677, A218678.

Sequence in context: A177453 A259787 A273601 * A296967 A292462 A340392

Adjacent sequences:  A218676 A218677 A218678 * A218680 A218681 A218682

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 19:49 EDT 2021. Contains 345068 sequences. (Running on oeis4.)