login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218679 O.g.f.: Sum_{n>=0} n^n * (1+n*x)^(4*n) * x^n/n! * exp(-n*x*(1+n*x)^4). 3
1, 1, 5, 31, 273, 2652, 30071, 375628, 5135649, 75945388, 1202006514, 20243446719, 360517872287, 6758311053521, 132833835618576, 2728019848249377, 58370987166092073, 1297916560174624569, 29924140267551540116, 713934350929955200551, 17594768127940813003452 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Compare o.g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).
LINKS
EXAMPLE
O.g.f.: A(x) = 1 + x + 5*x^2 + 31*x^3 + 273*x^4 + 2652*x^5 + 30071*x^6 +...
where
A(x) = 1 + (1+x)^4*x*exp(-x*(1+x)^4) + 2^2*(1+2*x)^8*x^2/2!*exp(-2*x*(1+2*x)^4) + 3^3*(1+3*x)^12*x^3/3!*exp(-3*x*(1+3*x)^4) + 4^4*(1+4*x)^16*x^4/4!*exp(-4*x*(1+4*x)^4) + 5^5*(1+5*x)^20*x^5/5!*exp(-5*x*(1+5*x)^4) +...
simplifies to a power series in x with integer coefficients.
PROG
(PARI) {a(n)=local(A=1+x); A=sum(k=0, n, k^k*(1+k*x)^(4*k)*x^k/k!*exp(-k*x*(1+k*x)^4+x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A346405 A259787 A273601 * A296967 A347416 A292462
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 04 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 16 08:10 EDT 2024. Contains 374345 sequences. (Running on oeis4.)