login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218670 O.g.f.: Sum_{n>=0} n^n * (1+n*x)^n * x^n/n! * exp(-n*x*(1+n*x)). 17
1, 1, 2, 7, 26, 116, 556, 2927, 16388, 97666, 612136, 4023878, 27579410, 196537134, 1451102836, 11074811191, 87160086800, 706055915318, 5876662642720, 50182337830986, 439036984440316, 3930618736372336, 35970734643745496, 336153100655220126, 3205000520319374116 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare the o.g.f. to the curious identity:

1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..350

EXAMPLE

O.g.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 116*x^5 + 556*x^6 + 2927*x^7 +...

where

A(x) = 1 + (1+x)*x*exp(-x*(1+x)) + 2^2*(1+2*x)^2*x^2/2!*exp(-2*x*(1+2*x)) + 3^3*(1+3*x)^3*x^3/3!*exp(-3*x*(1+3*x)) + 4^4*(1+4*x)^4*x^4/4!*exp(-4*x*(1+4*x)) + 5^5*(1+5*x)^5*x^5/5!*exp(-5*x*(1+5*x)) +...

simplifies to a power series in x with integer coefficients.

PROG

(PARI) {a(n)=local(A=1+x); A=sum(k=0, n, k^k*(1+k*x)^k*x^k/k!*exp(-k*x*(1+k*x)+x*O(x^n))); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A218677, A218678, A218679, A218667, A218668, A218669, A134055, A218671, A217900.

Sequence in context: A030429 A167551 A309396 * A302691 A081566 A213094

Adjacent sequences:  A218667 A218668 A218669 * A218671 A218672 A218673

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 15:42 EDT 2021. Contains 345142 sequences. (Running on oeis4.)