login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218668
O.g.f.: Sum_{n>=0} 1/(1-n^2*x)^n * x^n/n! * exp(-x/(1-n^2*x)).
9
1, 0, 1, 3, 22, 161, 1546, 18857, 270320, 4471693, 85455574, 1865128265, 45735737037, 1247518965519, 37654095184226, 1250673144714138, 45415758777730668, 1792734161930717221, 76595370803745016626, 3529261203030717032927, 174742139545017029583279
OFFSET
0,4
COMMENTS
Compare g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).
LINKS
EXAMPLE
O.g.f.: A(x) = 1 + x^2 + 3*x^3 + 22*x^4 + 161*x^5 + 1546*x^6 + 18857*x^7 +...
where
A(x) = exp(-x) + x/(1-x)*exp(-x/(1-x)) + x^2/(1-4*x)^2/2!*exp(-x/(1-4*x)) + x^3/(1-9*x)^3/3!*exp(-x/(1-9*x)) + x^4/(1-16*x)^4/4!*exp(-x/(1-16*x)) + x^5/(1-25*x)^5/5!*exp(-x/(1-25*x)) +...
simplifies to a power series in x with integer coefficients.
PROG
(PARI) {a(n)=local(A=1+x, X=x+x*O(x^n)); A=sum(k=0, n, 1/(1-k^2*X)^k*x^k/k!*exp(-X/(1-k^2*X))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 04 2012
STATUS
approved