login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192365
Number of lattice paths from (0,0) to (n,n) using steps (1,0),(2,0),(0,1),(0,2),(1,1),(2,2).
8
1, 3, 22, 165, 1327, 10950, 92045, 783579, 6733966, 58294401, 507579829, 4440544722, 39000863629, 343677908223, 3037104558574, 26904952725061, 238854984979423, 2124492829796598, 18927927904130617, 168888613467092895, 1508973226894216106, 13498652154574126523, 120886709687492946083
OFFSET
0,2
LINKS
FORMULA
G.f.: sqrt( ((2*x^2+6*x-3)/p4 - 2/sqrt(p4))/(4*x^2-4*x-5) ) where p4 = x^4+6*x^3+7*x^2-10*x+1. - Mark van Hoeij, Apr 16 2013
MAPLE
p4 := x^4+6*x^3+7*x^2-10*x+1;
ogf := sqrt( ((2*x^2+6*x-3)/p4 - 2/sqrt(p4))/(4*x^2-4*x-5) );
series(ogf, x=0, 30); # Mark van Hoeij, Apr 16 2013
# second Maple program:
b:= proc(x, y) option remember; `if`(min(x, y)<0, 0,
`if`(max(x, y)=0, 1, add(b(x, y-j)+
b(x-j, y)+b(x-j, y-j), j=1..2)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, May 16 2017
MATHEMATICA
b[x_, y_] := b[x, y] = If[Min[x, y] < 0, 0, If[Max[x, y] == 0, 1, Sum[b[x, y - j] + b[x - j, y] + b[x - j, y - j], {j, 1, 2}]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 23 2017, after Alois P. Heinz *)
PROG
(PARI) /* same as in A092566 but use */
steps=[[0, 1], [0, 2], [1, 0], [2, 0], [1, 1], [2, 2]];
/* Joerg Arndt, Jun 30 2011 */
CROSSREFS
Sequence in context: A183259 A218668 A164021 * A074578 A290719 A074576
KEYWORD
nonn
AUTHOR
Eric Werley, Jun 29 2011
EXTENSIONS
Terms > 507579829 from Joerg Arndt, Jun 30 2011
STATUS
approved