login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of lattice paths from (0,0) to (n,n) using steps (1,0),(2,0),(0,1),(0,2),(1,1),(2,2).
8

%I #23 Mar 22 2022 02:27:19

%S 1,3,22,165,1327,10950,92045,783579,6733966,58294401,507579829,

%T 4440544722,39000863629,343677908223,3037104558574,26904952725061,

%U 238854984979423,2124492829796598,18927927904130617,168888613467092895,1508973226894216106,13498652154574126523,120886709687492946083

%N Number of lattice paths from (0,0) to (n,n) using steps (1,0),(2,0),(0,1),(0,2),(1,1),(2,2).

%H Alois P. Heinz, <a href="/A192365/b192365.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: sqrt( ((2*x^2+6*x-3)/p4 - 2/sqrt(p4))/(4*x^2-4*x-5) ) where p4 = x^4+6*x^3+7*x^2-10*x+1. - _Mark van Hoeij_, Apr 16 2013

%p p4 := x^4+6*x^3+7*x^2-10*x+1;

%p ogf := sqrt( ((2*x^2+6*x-3)/p4 - 2/sqrt(p4))/(4*x^2-4*x-5) );

%p series(ogf, x=0, 30); # _Mark van Hoeij_, Apr 16 2013

%p # second Maple program:

%p b:= proc(x, y) option remember; `if`(min(x, y)<0, 0,

%p `if`(max(x, y)=0, 1, add(b(x, y-j)+

%p b(x-j, y)+b(x-j, y-j), j=1..2)))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, May 16 2017

%t b[x_, y_] := b[x, y] = If[Min[x, y] < 0, 0, If[Max[x, y] == 0, 1, Sum[b[x, y - j] + b[x - j, y] + b[x - j, y - j], {j, 1, 2}]]];

%t a[n_] := b[n, n];

%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jun 23 2017, after _Alois P. Heinz_ *)

%o (PARI) /* same as in A092566 but use */

%o steps=[[0,1], [0,2], [1,0], [2,0], [1,1], [2,2]];

%o /* _Joerg Arndt_, Jun 30 2011 */

%K nonn

%O 0,2

%A _Eric Werley_, Jun 29 2011

%E Terms > 507579829 from _Joerg Arndt_, Jun 30 2011