OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f. -16*(3*s+1)*s^(3/2)/(3*s^4+2*s^3-76*s^2+6*s+1) where s satisfies 16*x*(3*s+1)*s+(s^2-18*s+1)*(s-1) = 0. - Mark van Hoeij, Apr 16 2013
MAPLE
s := RootOf( 16*x*(3*s+1)*s+(s^2-18*s+1)*(s-1), s):
ogf := -16*(3*s+1)*s^(3/2)/(3*s^4+2*s^3-76*s^2+6*s+1):
series(ogf, x=0, 20); # Mark van Hoeij, Apr 16 2013
# second Maple program:
b:= proc(x, y) option remember;
`if`(min(x, y)<0, 0, `if`(max(x, y)=0, 1,
b(x-1, y)+b(x-2, y)+b(x, y-2)+b(x-1, y-1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35); # Alois P. Heinz, May 16 2017
MATHEMATICA
a[0, 0] = 1; a[n_, k_] /; n >= 0 && k >= 0 := a[n, k] = a[n, k - 1] + a[n, k - 2] + a[n - 1, k - 1] + a[n - 2, k]; a[_, _] = 0;
a[n_] := a[n, n];
a /@ Range[0, 25] (* Jean-François Alcover, Oct 14 2019 *)
PROG
(PARI) /* same as in A092566 but use */
steps=[[1, 0], [2, 0], [0, 2], [1, 1]];
/* Joerg Arndt, Jun 30 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 01 2011
STATUS
approved