login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279512 Sierpinski octahedron numbers a(n) = 2*6^n + 3*2^n + 1. 4
6, 19, 85, 457, 2641, 15649, 93505, 560257, 3360001, 20156929, 120935425, 725600257, 4353576961, 26121412609, 156728377345, 940370067457, 5642220011521, 33853319282689, 203119914123265, 1218719481593857, 7312316883271681, 43873901287047169 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Sierpinski recursion applied to octahedron. Cf. A279511 for square pyramids.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Wikipedia, Sierpinski triangle, see section on higher dimensional analogues.

Index entries for linear recurrences with constant coefficients, signature (9,-20,12).

FORMULA

a(n) = 3*2^n + 2^(n+1)*3^n + 1.

a(n) = 6a(n-1) - 6(2^n+1) + 1.

a(n) = 6a(n-1) - (3*2^(n+1) + 5).

a(n) = 2*6^n + 3*2^n + 1.

From Colin Barker, Dec 15 2016: (Start)

a(n) = 9*a(n-1) - 20*a(n-2) + 12*a(n-3) for n>2.

G.f.: (6 - 35*x + 34*x^2) / ((1 - x)*(1 - 2*x)*(1 - 6*x)).

(End)

MATHEMATICA

LinearRecurrence[{9, -20, 12}, {6, 19, 85}, 50] (* or *) Table[2*6^n + 3*2^n + 1, {n, 0, 50}] (* G. C. Greubel, Dec 22 2016 *)

PROG

(PARI) Vec((6 - 35*x + 34*x^2) / ((1 - x)*(1 - 2*x)*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Dec 15 2016

CROSSREFS

Cf. A005900, A047999, A279511.

Sequence in context: A220795 A026545 A041937 * A111510 A151277 A192368

Adjacent sequences:  A279509 A279510 A279511 * A279513 A279514 A279515

KEYWORD

nonn,easy

AUTHOR

Steven Beard, Dec 14 2016

EXTENSIONS

Incorrect terms corrected by Colin Barker, Dec 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 25 21:59 EDT 2017. Contains 289798 sequences.