login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

O.g.f.: Sum_{n>=0} 1/(1-n^2*x)^n * x^n/n! * exp(-x/(1-n^2*x)).
9

%I #7 Oct 30 2014 17:22:34

%S 1,0,1,3,22,161,1546,18857,270320,4471693,85455574,1865128265,

%T 45735737037,1247518965519,37654095184226,1250673144714138,

%U 45415758777730668,1792734161930717221,76595370803745016626,3529261203030717032927,174742139545017029583279

%N O.g.f.: Sum_{n>=0} 1/(1-n^2*x)^n * x^n/n! * exp(-x/(1-n^2*x)).

%C Compare g.f. to the curious identity:

%C 1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).

%H Vaclav Kotesovec, <a href="/A218668/b218668.txt">Table of n, a(n) for n = 0..290</a>

%e O.g.f.: A(x) = 1 + x^2 + 3*x^3 + 22*x^4 + 161*x^5 + 1546*x^6 + 18857*x^7 +...

%e where

%e A(x) = exp(-x) + x/(1-x)*exp(-x/(1-x)) + x^2/(1-4*x)^2/2!*exp(-x/(1-4*x)) + x^3/(1-9*x)^3/3!*exp(-x/(1-9*x)) + x^4/(1-16*x)^4/4!*exp(-x/(1-16*x)) + x^5/(1-25*x)^5/5!*exp(-x/(1-25*x)) +...

%e simplifies to a power series in x with integer coefficients.

%o (PARI) {a(n)=local(A=1+x,X=x+x*O(x^n));A=sum(k=0,n,1/(1-k^2*X)^k*x^k/k!*exp(-X/(1-k^2*X)));polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A218667, A218669, A218670, A217900.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Nov 04 2012