The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218669 O.g.f.: Sum_{n>=0} 1/(1-n^3*x)^n * x^n/n! * exp(-x/(1-n^3*x)). 8
 1, 0, 1, 7, 97, 1561, 41136, 1551814, 72440460, 4281320257, 324623105584, 30086950057627, 3299720918091511, 428431079916572044, 65637957066642609845, 11659659637028895337265, 2367270866164121777222596, 546795407830461739380895161, 143176487805296033192642234802 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Compare g.f. to the curious identity: 1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)). LINKS EXAMPLE O.g.f.: A(x) = 1 + x^2 + 7*x^3 + 97*x^4 + 1561*x^5 + 41136*x^6 +... where A(x) = exp(-x) + x/(1-x)*exp(-x/(1-x)) + x^2/(1-8*x)^2/2!*exp(-x/(1-8*x)) + x^3/(1-27*x)^3/3!*exp(-x/(1-27*x)) + x^4/(1-64*x)^4/4!*exp(-x/(1-64*x)) + x^5/(1-125*x)^5/5!*exp(-x/(1-125*x)) +... simplifies to a power series in x with integer coefficients. PROG (PARI) {a(n)=local(A=1+x, X=x+x*O(x^n)); A=sum(k=0, n, 1/(1-k^3*X)^k*x^k/k!*exp(-X/(1-k^3*X))); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A218667, A218668, A218670, A217900. Sequence in context: A243867 A232290 A011943 * A188441 A178808 A083083 Adjacent sequences:  A218666 A218667 A218668 * A218670 A218671 A218672 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 11:23 EDT 2020. Contains 334657 sequences. (Running on oeis4.)