OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-3/8) * eta(q)^3 * eta(q^4)^5 / (eta(q^2)^2 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ -3, -1, -3, -6, -3, -1, -3, -4, ...].
G.f.: Product_{k>0} (1 - x^k)^3 * (1 + x^(2*k))^2 * (1 - x^(4*k)) / (1 + x^(4*k))^2.
EXAMPLE
G.f. = 1 - 3*x + 2*x^2 - x^3 + 10*x^5 - 7*x^6 - 12*x^8 - 6*x^9 + 9*x^10 + ...
G.f. = q^3 - 3*q^11 + 2*q^19 - q^27 + 10*q^43 - 7*q^51 - 12*q^67 - 6*q^75 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 EllipticTheta[ 3, 0, x^2], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^4 + A)^5 / (eta(x^2 + A)^2 * eta(x^8 + A)^2), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 05 2015
STATUS
approved