login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370506
T(n,k) is the number permutations p of [n] that are j-dist-increasing for exactly k distinct values j in [n], where p is j-dist-increasing if j>=0 and p(i)<p(i+j) for all i in [n-j]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
3
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 11, 8, 4, 1, 0, 55, 38, 19, 7, 1, 0, 319, 228, 110, 50, 12, 1, 0, 2233, 1574, 775, 322, 115, 20, 1, 0, 17641, 12524, 6216, 2611, 1033, 261, 33, 1, 0, 158769, 112084, 55692, 23585, 9103, 3006, 586, 54, 1, 0, 1578667, 1119496, 556754, 238425, 91764, 33929, 8372, 1304, 88, 1
OFFSET
0,8
FORMULA
Sum_{k=0..n} k * T(n,k) = A248687(n) for n>=1.
EXAMPLE
T(4,1) = 11: 2341, 2431, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321.
T(4,2) = 8: 1342, 1423, 1432, 2314, 2413, 3124, 3142, 3214.
T(4,3) = 4: 1243, 1324, 2134, 2143.
T(4,4) = 1: 1234.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 11, 8, 4, 1;
0, 55, 38, 19, 7, 1;
0, 319, 228, 110, 50, 12, 1;
0, 2233, 1574, 775, 322, 115, 20, 1;
0, 17641, 12524, 6216, 2611, 1033, 261, 33, 1;
0, 158769, 112084, 55692, 23585, 9103, 3006, 586, 54, 1;
...
MAPLE
q:= proc(l, k) local i; for i from 1 to nops(l)-k do
if l[i]>=l[i+k] then return 0 fi od; 1
end:
b:= proc(n) option remember; add(x^add(
q(l, j), j=1..n), l=combinat[permute](n))
end:
T:= (n, k)-> coeff(b(n), x, k):
seq(seq(T(n, k), k=0..n), n=0..8);
MATHEMATICA
q[l_, k_] := Module[{i}, For[i = 1, i <= Length[l]-k, i++,
If[l[[i]] >= l[[i+k]], Return@0]]; 1];
b[n_] := b[n] = Sum[x^Sum[q[l, j], {j, 1, n}], {l, Permutations[Range[n]]}];
T[n_, k_] := Coefficient[b[n], x, k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 24 2024, after Alois P. Heinz *)
CROSSREFS
Column k=0 gives A000007.
Column k=1 gives A370514 or A370507(n,n) for n>=1.
Row sums give A000142.
T(n,n-1) gives A000071(n+1).
Sequence in context: A357079 A259790 A246654 * A184182 A085771 A253286
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 20 2024
STATUS
approved