login
A370507
T(n,k) is the number permutations p of [n] that are k-dist-increasing but not j-dist-increasing for any j<k, where p is j-dist-increasing if j>=0 and p(i)<p(i+j) for all i in [n-j]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
14
1, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 5, 7, 11, 0, 1, 9, 22, 33, 55, 0, 1, 19, 77, 112, 192, 319, 0, 1, 34, 189, 480, 788, 1315, 2233, 0, 1, 69, 526, 2187, 3500, 5987, 10409, 17641, 0, 1, 125, 1625, 6811, 18273, 30568, 53791, 92917, 158769, 0, 1, 251, 4111, 23507, 101424, 167480, 299769, 528253, 925337, 1578667
OFFSET
0,9
EXAMPLE
T(4,1) = 1: 1234.
T(4,2) = 5: 1243, 1324, 2134, 2143, 3142.
T(4,3) = 7: 1342, 1423, 1432, 2314, 2413, 3124, 3214.
T(4,4) = 11: 2341, 2431, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 3;
0, 1, 5, 7, 11;
0, 1, 9, 22, 33, 55;
0, 1, 19, 77, 112, 192, 319;
0, 1, 34, 189, 480, 788, 1315, 2233;
0, 1, 69, 526, 2187, 3500, 5987, 10409, 17641;
0, 1, 125, 1625, 6811, 18273, 30568, 53791, 92917, 158769;
...
MAPLE
q:= proc(l, k) local i; for i from 1 to nops(l)-k do
if l[i]>=l[i+k] then return 0 fi od; 1
end:
m:= proc(l) local k;
for k from 0 to nops(l) do if q(l, k)>0 then return k fi od
end:
b:= proc(n) b(n):= add(x^m(l), l=combinat[permute](n)) end:
T:= (n, k)-> coeff(b(n), x, k):
seq(seq(T(n, k), k=0..n), n=0..8);
MATHEMATICA
q[l_, k_] := Module[{i}, For[i = 1, i <= Length[l] - k, i++, If[l[[i]] >= l[[i + k]], Return [0]]]; 1];
m[l_] := Module[{k}, For[k = 0, k <= Length[l], k++, If[q[l, k] > 0, Return[k]]]];
b[n_] := Sum[x^m[l], {l, Permutations[Range@n]}];
T[n_, k_] := Coefficient[b[n], x, k];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)
CROSSREFS
Columns k=0-2 give: A000007, A057427, A014495.
Main diagonal gives A370514, also A370506(n,1) for n>=1.
Row sums give A000142.
Cf. A370505.
Sequence in context: A163465 A360380 A370505 * A263230 A364257 A366258
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 20 2024
STATUS
approved