OFFSET
0,9
LINKS
EXAMPLE
T(4,1) = 1: 1234.
T(4,2) = 5: 1243, 1324, 2134, 2143, 3142.
T(4,3) = 7: 1342, 1423, 1432, 2314, 2413, 3124, 3214.
T(4,4) = 11: 2341, 2431, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 3;
0, 1, 5, 7, 11;
0, 1, 9, 22, 33, 55;
0, 1, 19, 77, 112, 192, 319;
0, 1, 34, 189, 480, 788, 1315, 2233;
0, 1, 69, 526, 2187, 3500, 5987, 10409, 17641;
0, 1, 125, 1625, 6811, 18273, 30568, 53791, 92917, 158769;
...
MAPLE
q:= proc(l, k) local i; for i from 1 to nops(l)-k do
if l[i]>=l[i+k] then return 0 fi od; 1
end:
m:= proc(l) local k;
for k from 0 to nops(l) do if q(l, k)>0 then return k fi od
end:
b:= proc(n) b(n):= add(x^m(l), l=combinat[permute](n)) end:
T:= (n, k)-> coeff(b(n), x, k):
seq(seq(T(n, k), k=0..n), n=0..8);
MATHEMATICA
q[l_, k_] := Module[{i}, For[i = 1, i <= Length[l] - k, i++, If[l[[i]] >= l[[i + k]], Return [0]]]; 1];
m[l_] := Module[{k}, For[k = 0, k <= Length[l], k++, If[q[l, k] > 0, Return[k]]]];
b[n_] := Sum[x^m[l], {l, Permutations[Range@n]}];
T[n_, k_] := Coefficient[b[n], x, k];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 20 2024
STATUS
approved