login
A370508
Expansion of Sum_{k>=0} k! * ( x * (1-x^3) )^k.
2
1, 1, 2, 6, 23, 116, 702, 4944, 39722, 358578, 3593664, 39595440, 475746474, 6190838544, 86740334160, 1301939398080, 20842001737224, 354469125185880, 6382790173842480, 121310821042966800, 2426863248540057480, 50975836645480342560, 1121691979824460425360
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/4)} (-1)^k * (n-3*k)! * binomial(n-3*k,k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1-x^3))^k))
(PARI) a(n) = sum(k=0, n\4, (-1)^k*(n-3*k)!*binomial(n-3*k, k));
CROSSREFS
Cf. A370510.
Sequence in context: A185334 A290280 A349087 * A370670 A059513 A132647
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Feb 20 2024
STATUS
approved