login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085771
Triangle read by rows. T(n, k) = A059438(n, k) for 1 <= k <= n, and T(n, 0) = n^0.
5
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 7, 3, 1, 0, 71, 32, 12, 4, 1, 0, 461, 177, 58, 18, 5, 1, 0, 3447, 1142, 327, 92, 25, 6, 1, 0, 29093, 8411, 2109, 531, 135, 33, 7, 1, 0, 273343, 69692, 15366, 3440, 800, 188, 42, 8, 1, 0, 2829325, 642581, 125316, 24892, 5226, 1146, 252, 52, 9, 1
OFFSET
0,8
COMMENTS
The convolution triangle of A003319, the number of irreducible permutations. - Peter Luschny, Oct 09 2022
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 262 (#14).
LINKS
FORMULA
Let f(x) = Sum_{n>=0} n!*x^n, g(x) = 1 - 1/f(x). Then g(x) is the g.f. of the second column, A003319.
Triangle T(n, k) read by rows, given by [0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA A000007, where DELTA is Deléham's operator defined in A084938.
G.f.: 1/(1 - xy/(1 - x/(1 - 2x/(1 - 2x/(1 - 3x/(1 - 3x/(1 - 4x/(1-.... (continued fraction). - Paul Barry, Jan 29 2009
EXAMPLE
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 1, 1]
[3] [0, 3, 2, 1]
[4] [0, 13, 7, 3, 1]
[5] [0, 71, 32, 12, 4, 1]
[6] [0, 461, 177, 58, 18, 5, 1]
[7] [0, 3447, 1142, 327, 92, 25, 6, 1]
[8] [0, 29093, 8411, 2109, 531, 135, 33, 7, 1]
[9] [0, 273343, 69692, 15366, 3440, 800, 188, 42, 8, 1]
MAPLE
# Uses function PMatrix from A357368.
PMatrix(10, A003319); # Peter Luschny, Oct 09 2022
PROG
(SageMath) # Using function delehamdelta from A084938.
def A085771_triangle(n) :
a = [0, 1] + [(i + 3) // 2 for i in range(1, n-1)]
b = [0^i for i in range(n)]
return delehamdelta(a, b)
A085771_triangle(9) # Peter Luschny, Sep 10 2022
CROSSREFS
T(2*n, n) = A308650(n).
Variants: A059439, A263484 (row reversed).
Sequence in context: A246654 A370506 A184182 * A253286 A344499 A284799
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Jul 22 2003
STATUS
approved