login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085770
Number of odd semiprimes < 10^n. Number of terms of A046315 < 10^n.
4
0, 1, 19, 204, 1956, 18245, 168497, 1555811, 14426124, 134432669, 1258822220, 11840335764, 111817881036, 1059796387004, 10076978543513, 96091983644261, 918679875630905, 8803388145953381, 84537081118605467, 813340036541900706, 7838825925851034479, 75669246175972479567
OFFSET
0,3
FORMULA
a(n) = A066265(n) - A220262(n) for n > 1. - Jinyuan Wang, Jul 30 2021
EXAMPLE
a(1)=1 because A046315(1)=9=3*3 is the only odd semiprime < 10^1,
a(2)=19 because there are 19 terms of A046315 < 10^2.
MATHEMATICA
OddSemiPrimePi[n_] := Sum[ PrimePi[n/Prime@i] - i + 1, {i, 2, PrimePi@ Sqrt@ n}]; Table[ OddSemiPrimePi[10^n], {n, 14}] (* Robert G. Wilson v, Feb 02 2006 *)
PROG
(Python)
from math import isqrt
from sympy import primepi, primerange
def A085770(n): return int((-(t:=primepi(s:=isqrt(m:=10**n)))*(t-1)>>1)+sum(primepi(m//k) for k in primerange(3, s+1))) if n>1 else n # Chai Wah Wu, Oct 17 2024
CROSSREFS
Cf. A046315 (odd numbers divisible by exactly 2 primes), A066265 (number of semiprimes < 10^n), A220262, A292785.
Sequence in context: A160452 A113596 A155670 * A002501 A180364 A125407
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Jul 22 2003
EXTENSIONS
a(10)-a(14) from Robert G. Wilson v, Feb 02 2006
a(15)-a(16) from Donovan Johnson, Mar 18 2010
a(0) inserted by and a(17)-a(21) from Jinyuan Wang, Jul 30 2021
STATUS
approved