login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220262
Number of even semiprimes < 10^n. Number of terms of A100484 < 10^n.
4
0, 3, 15, 95, 669, 5133, 41538, 348513, 3001134, 26355867, 234954223, 2119654578, 19308136142, 177291661649, 1638923764567, 15237833654620, 142377417196364, 1336094767763971, 12585956566571620, 118959989688273472, 1127779923790184543, 10720710117789005897
OFFSET
0,2
COMMENTS
All such semiprimes have the form 2*p, where p is prime. - T. D. Noe, Dec 09 2012
FORMULA
a(n) = A066265(n) - A085770(n) for n > 1.
MATHEMATICA
Table[PrimePi[10^n/2], {n, 0, 14}]
PROG
(PARI) a(n)=primepi(10^n\2) \\ Charles R Greathouse IV, Sep 08 2015
(Python)
from sympy import primepi
def A220262(n): return primepi(10**n>>1) # Chai Wah Wu, Oct 17 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Dec 08 2012
EXTENSIONS
a(15)-a(20) from Hugo Pfoertner, Oct 14 2017
a(21) from Jinyuan Wang, Jul 30 2021
STATUS
approved