login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378951
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(5/3)/(1 + x*A(x)) )^3.
0
1, 3, 15, 94, 663, 5025, 39970, 329145, 2782095, 23999078, 210427869, 1869908364, 16802935370, 152425394958, 1393972037301, 12838326815582, 118970843349711, 1108503805898190, 10378559702646846, 97593299922016224, 921294705307189029
OFFSET
0,2
FORMULA
G.f. A(x) satisfies:
(1) A(x) = 1/( 1 - x*A(x)^(4/3)/(1 + x*A(x)) )^3.
(2) A(x) = 1 + x * A(x) * (1 + A(x)^(2/3) + A(x)^(4/3)).
(3) A(x) = B(x)^3 where B(x) is the g.f. of A271469.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
PROG
(PARI) a(n, r=3, s=-1, t=5, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
Cf. A378891.
Sequence in context: A369301 A368964 A274734 * A177341 A220262 A365560
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Dec 11 2024
STATUS
approved