login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378952
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^2/(1 + x*A(x)^(4/3)) )^3.
0
1, 3, 18, 139, 1218, 11511, 114398, 1178421, 12469626, 134734092, 1480317468, 16487870031, 185744716414, 2112756042468, 24230663513604, 279889210974003, 3253295301115290, 38023971948455859, 446603044829013514, 5268557500949993964, 62398899992129490756
OFFSET
0,2
FORMULA
G.f. A(x) satisfies:
(1) A(x) = 1/( 1 - x*A(x)^(5/3)/(1 + x*A(x)^(4/3)) )^3.
(2) A(x) = 1 + x * A(x)^(4/3) * (1 + A(x)^(2/3) + A(x)^(4/3)).
(3) A(x) = B(x)^3 where B(x) is the g.f. of A364765.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
PROG
(PARI) a(n, r=3, s=-1, t=6, u=4) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
Cf. A378891.
Sequence in context: A357403 A039618 A183363 * A216492 A127129 A186266
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Dec 11 2024
STATUS
approved