The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271469 G.f. satisfies: A(x) = 1 + x*(A(x)^3 - A(x)^4 + A(x)^5). 0
 1, 1, 4, 23, 155, 1142, 8910, 72350, 605056, 5175866, 45077560, 398348733, 3562916317, 32192775763, 293410452560, 2694283228653, 24902681767987, 231496130358758, 2162985033344112, 20301976721356134, 191336242071696514, 1809916398759630481, 17178063381786563194, 163536967014934201972, 1561247114394683682834, 14943175106109268856975 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA G.f. A(x) satisfies: (1) A(x)^2 = 1 + x*(A(x)^3 + A(x)^6). (2) A(x)^3 = 1 + x*(A(x)^3 + A(x)^5 + A(x)^7). Let F(x) = (1+x - sqrt(1 - 2*x - 3*x^2)) / (2*x), then g.f. A(x) satisfies: (3) A(x) = ( (1/x)*Series_Reversion(x/F(x)^3) )^(1/3), (4) A(x) = F(x*A(x)^3) and F(x) = A(x/F(x)^3), where F(x) = 1 + x*M(x) such that M(x) = 1 + x*M(x) + x^2*M(x)^2 is the g.f. of the Motzkin numbers (A001006). Let G(x) = 1 + x*(G(x)^2 - G(x)^3 + G(x)^4), then g.f. A(x) satisfies: (5) A(x) = (1/x)*Series_Reversion(x/G(x)), (6) A(x) = G(x*A(x)) and G(x) = A(x/G(x)), where G(x) is the g.f. of A219537. a(n) ~ sqrt((34 + (34102 - 8262*sqrt(17))^(1/3) + (34102 + 8262*sqrt(17))^(1/3)) / 1632) * ((28 + (513243 - 4131*sqrt(17))^(1/3)/3 + (19009 + 153*sqrt(17))^(1/3)) / 8)^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Apr 16 2016 D-finite recurrence: 8*n*(2*n-1)*(4*n-1)*(4*n+1)*(204*n^4 - 1341*n^3 + 3191*n^2 - 3286*n + 1242)*a(n) = 12*(45696*n^8 - 391776*n^7 + 1376164*n^6 - 2580579*n^5 + 2808064*n^4 - 1797694*n^3 + 651566*n^2 - 119476*n + 8160)*a(n-1) - 6*(n-2)*(29376*n^7 - 237168*n^6 + 760044*n^5 - 1236774*n^4 + 1082233*n^3 - 496791*n^2 + 108530*n - 8400)*a(n-2) + 9*(n-3)*(n-2)*(3*n-8)*(3*n-4)*(204*n^4 - 525*n^3 + 392*n^2 - 111*n + 10)*a(n-3). - Vaclav Kotesovec, Apr 16 2016 EXAMPLE G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 155*x^4 + 1142*x^5 + 8910*x^6 +... Related expansions: A(x)^2 = 1 + 2*x + 9*x^2 + 54*x^3 + 372*x^4 + 2778*x^5 + 21873*x^6 +... A(x)^3 = 1 + 3*x + 15*x^2 + 94*x^3 + 663*x^4 + 5025*x^5 + 39970*x^6 +... A(x)^4 = 1 + 4*x + 22*x^2 + 144*x^3 + 1041*x^4 + 8016*x^5 + 64470*x^6 +... A(x)^5 = 1 + 5*x + 30*x^2 + 205*x^3 + 1520*x^4 + 11901*x^5 + 96850*x^6 +... A(x)^6 = 1 + 6*x + 39*x^2 + 278*x^3 + 2115*x^4 + 16848*x^5 + 138816*x^6 +... A(x)^7 = 1 + 7*x + 49*x^2 + 364*x^3 + 2842*x^4 + 23044*x^5 + 192325*x^6 +... where A(x) = 1 + x*(A(x)^3 - A(x)^4 + A(x)^5), and A(x)^2 = 1 + x*(A(x)^3 + A(x)^6), and A(x)^3 = 1 + x*(A(x)^3 + A(x)^5 + A(x)^7), and A(x)^4 = 1 + x*(A(x)^3 + A(x)^5 + A(x)^6 + A(x)^8), and A(x)^5 = 1 + x*(A(x)^3 + A(x)^5 + A(x)^6 + A(x)^7 + A(x)^9), etc. The g.f. satisfies A(x) = F(x*A(x)^3) and F(x) = A(x/F(x)^3) where F(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 21*x^6 + 51*x^7 +...+ A001006(n-1)*x^n +... is a g.f. of the Motzkin numbers (A001006, shifted right 1 place). The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where G(x) = 1 + x + 3*x^2 + 13*x^3 + 66*x^4 + 366*x^5 + 2148*x^6 +...+ A219537(n)*x^n +... satisfies G(x) = 1 + x*(G(x)^2 - G(x)^3 + G(x)^4). MATHEMATICA CoefficientList[(1/x*InverseSeries[Series[8*x^4/(1 + x - Sqrt[1 - 2*x - 3*x^2])^3, {x, 0, 20}], x])^(1/3), x] (* Vaclav Kotesovec, Apr 16 2016 *) PROG (PARI) /* Formula A(x) = 1 + x*(A(x)^3 - A(x)^4 + A(x)^5): */ {a(n)=local(A=1); for(i=1, n, A=1+x*(A^3-A^4+A^5) +x*O(x^n)); polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) (PARI) /* Formula using Series Reversion involving Motzkin numbers: */ {a(n)=local(A=1); A=(1+x-sqrt(1-2*x-3*x^2+x^3*O(x^n)))/(2*x); polcoeff( (1/x*serreverse(x/A^3))^(1/3), n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A219537, A001006. Sequence in context: A192730 A246813 A055723 * A007297 A263843 A326350 Adjacent sequences: A271466 A271467 A271468 * A271470 A271471 A271472 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 08 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 04:50 EST 2022. Contains 358578 sequences. (Running on oeis4.)