OFFSET
1,3
COMMENTS
Each set partition is written as a sequence of blocks, ordered by the smallest elements in the blocks.
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
Wikipedia, Partition of a set
FORMULA
T(n,n) = 2 * A000110(n-1) = 2 * Sum_{j=0..n-1} T(n-1,j) for n>1.
EXAMPLE
T(1,1) = 1: 1.
T(2,2) = 2: 12, 1|2.
T(3,2) = 1: 13|2.
T(3,3) = 4: 123, 12|3, 1|23, 1|2|3.
T(4,2) = 1: 134|2.
T(4,3) = 4: 124|3, 14|23, 14|2|3, 1|24|3.
T(4,4) = 10: 1234, 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|2|34, 1|2|3|4.
T(5,2) = 1: 1345|2.
T(5,3) = 6: 1245|3, 145|23, 145|2|3, 14|25|3, 15|24|3, 1|245|3.
T(5,4) = 15: 1235|4, 125|34, 125|3|4, 12|35|4, 135|24, 135|2|4, 13|25|4, 15|234, 15|23|4, 1|235|4, 15|2|34, 1|25|34, 15|2|3|4, 1|25|3|4, 1|2|35|4.
Triangle T(n,k) begins:
1;
0, 2;
0, 1, 4;
0, 1, 4, 10;
0, 1, 6, 15, 30;
0, 1, 10, 29, 59, 104;
0, 1, 18, 63, 139, 250, 406;
0, 1, 34, 149, 365, 692, 1145, 1754;
0, 1, 66, 375, 1039, 2110, 3627, 5649, 8280;
0, 1, 130, 989, 3149, 6932, 12521, 20085, 29874, 42294;
...
MAPLE
b:= proc(n, m, c) option remember; `if`(n=0, x^c, add(
b(n-1, max(m, j), `if`(j>=m, n, c)), j=1..m+1))
end:
T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n-1))(b(n, 0$2)):
seq(T(n), n=1..12);
MATHEMATICA
b[n_, m_, c_] := b[n, m, c] = If[n == 0, x^c, Sum[b[n-1, Max[m, j], If[j >= m, n, c]], {j, 1, m+1}]];
T[n_] := Function[p, Table[Coefficient[p, x, n-i], {i, 0, n-1}]][b[n, 0, 0]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)
CROSSREFS
Columns k=1-10 give: A000007(n-1), A054977(n-2), A052548(n-3) for n>3, A271743, A271744, A271745, A271746, A271747, A271748, A271749.
Main diagonal gives A186021(n-1).
Lower diagonals d=1-10 give: A271752, A271753, A271754, A271755, A271756, A271757, A271758, A271759, A271760, A271761.
Row sums give A000110.
T(2n,n) gives A271467.
T(2n+1,n+1) gives A271607.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 08 2016
STATUS
approved