login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271466
Number T(n,k) of set partitions of [n] such that k is the largest element of the last block; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
23
1, 0, 2, 0, 1, 4, 0, 1, 4, 10, 0, 1, 6, 15, 30, 0, 1, 10, 29, 59, 104, 0, 1, 18, 63, 139, 250, 406, 0, 1, 34, 149, 365, 692, 1145, 1754, 0, 1, 66, 375, 1039, 2110, 3627, 5649, 8280, 0, 1, 130, 989, 3149, 6932, 12521, 20085, 29874, 42294, 0, 1, 258, 2703, 10039, 24190, 46299, 77133, 117488, 168509, 231950
OFFSET
1,3
COMMENTS
Each set partition is written as a sequence of blocks, ordered by the smallest elements in the blocks.
LINKS
FORMULA
T(n,n) = 2 * A000110(n-1) = 2 * Sum_{j=0..n-1} T(n-1,j) for n>1.
EXAMPLE
T(1,1) = 1: 1.
T(2,2) = 2: 12, 1|2.
T(3,2) = 1: 13|2.
T(3,3) = 4: 123, 12|3, 1|23, 1|2|3.
T(4,2) = 1: 134|2.
T(4,3) = 4: 124|3, 14|23, 14|2|3, 1|24|3.
T(4,4) = 10: 1234, 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|2|34, 1|2|3|4.
T(5,2) = 1: 1345|2.
T(5,3) = 6: 1245|3, 145|23, 145|2|3, 14|25|3, 15|24|3, 1|245|3.
T(5,4) = 15: 1235|4, 125|34, 125|3|4, 12|35|4, 135|24, 135|2|4, 13|25|4, 15|234, 15|23|4, 1|235|4, 15|2|34, 1|25|34, 15|2|3|4, 1|25|3|4, 1|2|35|4.
Triangle T(n,k) begins:
1;
0, 2;
0, 1, 4;
0, 1, 4, 10;
0, 1, 6, 15, 30;
0, 1, 10, 29, 59, 104;
0, 1, 18, 63, 139, 250, 406;
0, 1, 34, 149, 365, 692, 1145, 1754;
0, 1, 66, 375, 1039, 2110, 3627, 5649, 8280;
0, 1, 130, 989, 3149, 6932, 12521, 20085, 29874, 42294;
...
MAPLE
b:= proc(n, m, c) option remember; `if`(n=0, x^c, add(
b(n-1, max(m, j), `if`(j>=m, n, c)), j=1..m+1))
end:
T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n-1))(b(n, 0$2)):
seq(T(n), n=1..12);
MATHEMATICA
b[n_, m_, c_] := b[n, m, c] = If[n == 0, x^c, Sum[b[n-1, Max[m, j], If[j >= m, n, c]], {j, 1, m+1}]];
T[n_] := Function[p, Table[Coefficient[p, x, n-i], {i, 0, n-1}]][b[n, 0, 0]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)
CROSSREFS
Columns k=1-10 give: A000007(n-1), A054977(n-2), A052548(n-3) for n>3, A271743, A271744, A271745, A271746, A271747, A271748, A271749.
Main diagonal gives A186021(n-1).
Lower diagonals d=1-10 give: A271752, A271753, A271754, A271755, A271756, A271757, A271758, A271759, A271760, A271761.
Row sums give A000110.
T(2n,n) gives A271467.
T(2n+1,n+1) gives A271607.
Cf. A095149 (k is maximum of the first block), A113547 (k is minimum of the last block).
Sequence in context: A259873 A121462 A349706 * A218581 A307177 A340264
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 08 2016
STATUS
approved