login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349706
Array T(n,k) = Sum_{j=0, k} binomial(k,j)*j^n for n and k >= 0, read by ascending antidiagonals.
0
1, 0, 2, 0, 1, 4, 0, 1, 4, 8, 0, 1, 6, 12, 16, 0, 1, 10, 24, 32, 32, 0, 1, 18, 54, 80, 80, 64, 0, 1, 34, 132, 224, 240, 192, 128, 0, 1, 66, 342, 680, 800, 672, 448, 256, 0, 1, 130, 924, 2192, 2880, 2592, 1792, 1024, 512, 0, 1, 258, 2574, 7400, 11000, 10752, 7840, 4608, 2304, 1024
OFFSET
0,3
LINKS
Renate Golombek, Aufgabe 1088, El. Math., 49 (1994), 126-127.
Simsek Yilmaz, New families of special numbers for computing negative order Euler numbers and related numbers and polynomials, Applicable Analysis and Discrete Mathematics 2018 Volume 12, Issue 1, Pages: 1-35. See B(n,k).
EXAMPLE
Array begins:
1 2 4 8 16 32
0 1 4 12 32 80
0 1 6 24 80 240
0 1 10 54 224 800
0 1 18 132 680 2880
0 1 34 342 2192 11000
MATHEMATICA
T[n_, k_] := Sum[Binomial[k, j] * If[j == n == 0, 1, j^n], {j, 0, k}]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 26 2021 *)
PROG
(PARI) T(n, k) = sum(j=0, k, binomial(k, j)*j^n);
CROSSREFS
Cf. A000079 (row 0), A001787 (row 1), A001788 (row 2), A058645 (row 3), A058649 (row 4), A059338 (row 5), A056468 (row 6), A084641 (row 7).
Sequence in context: A208756 A259873 A121462 * A271466 A218581 A307177
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Nov 26 2021
STATUS
approved