login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058649
a(n) = 2^(n-4)*n*(n+1)*(n^2+5*n-2).
5
0, 1, 18, 132, 680, 2880, 10752, 36736, 117504, 357120, 1041920, 2939904, 8067072, 21618688, 56770560, 146472960, 372113408, 932511744, 2308571136, 5653135360, 13707509760, 32942063616, 78525759488, 185799278592, 436627046400
OFFSET
0,3
COMMENTS
Binomial transform of A000583.
REFERENCES
A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
FORMULA
a(n) = Sum_{i=1..n} i^4 * binomial(n, i).
G.f.: x*(8*x^2-8*x-1)/(2*x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
a(n) = 10*a(n-1)-40*a(n-2)+80*a(n-3)-80*a(n-4)+32*a(n-5). - Wesley Ivan Hurt, Dec 24 2021
MATHEMATICA
LinearRecurrence[{10, -40, 80, -80, 32}, {0, 1, 18, 132, 680}, 30] (* Wesley Ivan Hurt, Dec 24 2021 *)
CROSSREFS
Cf. A000583.
Sequence in context: A299137 A299368 A299932 * A273222 A103308 A320677
KEYWORD
nonn,easy
AUTHOR
Yong Kong (ykong(AT)curagen.com), Dec 26 2000
STATUS
approved