login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208756
Triangle of coefficients of polynomials v(n,x) jointly generated with A208755; see the Formula section.
4
1, 0, 2, 0, 1, 4, 0, 1, 3, 8, 0, 1, 3, 9, 16, 0, 1, 3, 11, 23, 32, 0, 1, 3, 13, 31, 57, 64, 0, 1, 3, 15, 39, 87, 135, 128, 0, 1, 3, 17, 47, 121, 227, 313, 256, 0, 1, 3, 19, 55, 159, 339, 579, 711, 512, 0, 1, 3, 21, 63, 201, 471, 933, 1431, 1593, 1024, 0, 1, 3, 23, 71
OFFSET
1,3
COMMENTS
For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0<=k<=n, it is (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 02 2012
FORMULA
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=x*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
As triangle with 0<=k<=n : G.f.: (1-x+y*x)/(1-(1+y)*x-(2*y^2-y)*x^2). - Philippe Deléham, Mar 02 2012
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + 2*T(n-2,k-2). - Philippe Deléham, Mar 02 2012
EXAMPLE
First five rows:
1
0...2
0...1...4
0...1...3...8
0...1...3...9...16
First five polynomials v(n,x):
1
2x
x + 4x^2
x + 3x^2 + 8x^3
x + 3x^2 + 9x^3 + 16^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208755 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208756 *)
CROSSREFS
Sequence in context: A372873 A212206 A247489 * A259873 A121462 A349706
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 01 2012
STATUS
approved